Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
2.
Nucleic Acids Res ; 50(6): 3155-3168, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35323968

ABSTRACT

Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.


Subject(s)
Bacteria , Bacteriophages , Bacteria/genetics , Bacteriophages/genetics , DNA Transposable Elements/genetics , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal , Phylogeny , Recombinases/genetics
3.
Nucleic Acids Res ; 50(5): 2807-2825, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35188569

ABSTRACT

The Sleeping Beauty (SB) transposon system is a popular tool for genome engineering, but random integration into the genome carries a certain genotoxic risk in therapeutic applications. Here we investigate the role of amino acids H187, P247 and K248 in target site selection of the SB transposase. Structural modeling implicates these three amino acids located in positions analogous to amino acids with established functions in target site selection in retroviral integrases and transposases. Saturation mutagenesis of these residues in the SB transposase yielded variants with altered target site selection properties. Transposon integration profiling of several mutants reveals increased specificity of integrations into palindromic AT repeat target sequences in genomic regions characterized by high DNA bendability. The H187V and K248R mutants redirect integrations away from exons, transcriptional regulatory elements and nucleosomal DNA in the human genome, suggesting enhanced safety and thus utility of these SB variants in gene therapy applications.


Subject(s)
Transposases , Amino Acids/genetics , DNA Transposable Elements/genetics , Humans , Integrases/metabolism , Protein Engineering , Transposases/genetics , Transposases/metabolism
4.
Mol Syst Biol ; 17(5): e9880, 2021 05.
Article in English | MEDLINE | ID: mdl-34018328

ABSTRACT

Mobile genetic elements (MGEs) sequester and mobilize antibiotic resistance genes across bacterial genomes. Efficient and reliable identification of such elements is necessary to follow resistance spreading. However, automated tools for MGE identification are missing. Tyrosine recombinase (YR) proteins drive MGE mobilization and could provide markers for MGE detection, but they constitute a diverse family also involved in housekeeping functions. Here, we conducted a comprehensive survey of YRs from bacterial, archaeal, and phage genomes and developed a sequence-based classification system that dissects the characteristics of MGE-borne YRs. We revealed that MGE-related YRs evolved from non-mobile YRs by acquisition of a regulatory arm-binding domain that is essential for their mobility function. Based on these results, we further identified numerous unknown MGEs. This work provides a resource for comparative analysis and functional annotation of YRs and aids the development of computational tools for MGE annotation. Additionally, we reveal how YRs adapted to drive gene transfer across species and provide a tool to better characterize antibiotic resistance dissemination.


Subject(s)
Archaea/genetics , Bacteria/genetics , Fungi/genetics , Recombinases/metabolism , Sequence Analysis, Protein/methods , Archaea/enzymology , Bacteria/enzymology , Drug Resistance, Microbial , Evolution, Molecular , Fungi/enzymology , Interspersed Repetitive Sequences , Molecular Sequence Annotation , Systems Biology
5.
Chembiochem ; 22(5): 834-838, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33085143

ABSTRACT

Phosphoprotein phosphatase-1 (PP1) is a key player in the regulation of phospho-serine (pSer) and phospho-threonine (pThr) dephosphorylation and is involved in a large fraction of cellular signaling pathways. Aberrant activity of PP1 has been linked to many diseases, including cancer and heart failure. Besides a well-established activity control by regulatory proteins, an inhibitory function for phosphorylation (p) of a Thr residue in the C-terminal intrinsically disordered tail of PP1 has been demonstrated. The associated phenotype of cell-cycle arrest was repeatedly proposed to be due to autoinhibition of PP1 through either conformational changes or substrate competition. Here, we use PP1 variants created by mutations and protein semisynthesis to differentiate between these hypotheses. Our data support the hypothesis that pThr exerts its inhibitory function by mediating protein complex formation rather than by a direct mechanism of structural changes or substrate competition.


Subject(s)
Intracellular Signaling Peptides and Proteins/pharmacology , Protein Phosphatase 1/antagonists & inhibitors , Serine/chemistry , Threonine/chemistry , Humans , Phosphorylation , Protein Binding , Protein Conformation , Protein Domains , Protein Phosphatase 1/genetics
6.
Nucleic Acids Res ; 48(1): 316-331, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31777924

ABSTRACT

The Sleeping Beauty (SB) transposon is an advanced tool for genetic engineering and a useful model to investigate cut-and-paste DNA transposition in vertebrate cells. Here, we identify novel SB transposase mutants that display efficient and canonical excision but practically unmeasurable genomic re-integration. Based on phylogenetic analyses, we establish compensating amino acid replacements that fully rescue the integration defect of these mutants, suggesting epistasis between these amino acid residues. We further show that the transposons excised by the exc+/int- transposase mutants form extrachromosomal circles that cannot undergo a further round of transposition, thereby representing dead-end products of the excision reaction. Finally, we demonstrate the utility of the exc+/int- transposase in cassette removal for the generation of reprogramming factor-free induced pluripotent stem cells. Lack of genomic integration and formation of transposon circles following excision is reminiscent of signal sequence removal during V(D)J recombination, and implies that cut-and-paste DNA transposition can be converted to a unidirectional process by a single amino acid change.


Subject(s)
Cellular Reprogramming , DNA Transposable Elements , Induced Pluripotent Stem Cells/metabolism , Transposases/genetics , Amino Acid Substitution , Animals , Epistasis, Genetic , Genetic Engineering/methods , HeLa Cells , Hep G2 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Mutation , Transposases/metabolism
7.
Nature ; 575(7783): 447-448, 2019 11.
Article in English | MEDLINE | ID: mdl-31745352
8.
Nat Biotechnol ; 37(12): 1502-1512, 2019 12.
Article in English | MEDLINE | ID: mdl-31685959

ABSTRACT

The Sleeping Beauty (SB) transposon system is an efficient non-viral gene transfer tool in mammalian cells, but its broad use has been hampered by uncontrolled transposase gene activity from DNA vectors, posing a risk of genome instability, and by the inability to use the transposase protein directly. In this study, we used rational protein design based on the crystal structure of the hyperactive SB100X variant to create an SB transposase (high-solubility SB, hsSB) with enhanced solubility and stability. We demonstrate that hsSB can be delivered with transposon DNA to genetically modify cell lines and embryonic, hematopoietic and induced pluripotent stem cells (iPSCs), overcoming uncontrolled transposase activity. We used hsSB to generate chimeric antigen receptor (CAR) T cells, which exhibit potent antitumor activity in vitro and in xenograft mice. We found that hsSB spontaneously penetrates cells, enabling modification of iPSCs and generation of CAR T cells without the use of transfection reagents. Titration of hsSB to modulate genomic integration frequency achieved as few as two integrations per genome.


Subject(s)
Genetic Engineering/methods , Mutagenesis, Insertional/genetics , Transposases/genetics , Cell Engineering/methods , Cell Line , Cells, Cultured , HeLa Cells , Humans , Recombinant Fusion Proteins/genetics , Stem Cells
9.
Curr Opin Struct Biol ; 59: 168-177, 2019 12.
Article in English | MEDLINE | ID: mdl-31590109

ABSTRACT

Transposases move discrete pieces of DNA between genomic locations and had a profound impact on evolution. They drove the emergence of important biological functions and are the most frequent proteins encoded in modern genomes. Yet, the molecular principles of their actions have remained largely unclear. Here we review recent structural studies of transposase-DNA complexes and related cellular machineries, which provided unmatched mechanistic insights. We highlight how transposases introduce major DNA twists and kinks at various stages of their reaction and discuss the functional impact of these astounding DNA acrobatics on several aspects of transposition. By comparison with distantly related DNA recombination systems, we propose that forcing DNA into unnatural shapes may be a general strategy to drive rearrangements forward.


Subject(s)
DNA Transposable Elements , Transposases/metabolism , Animals , DNA Breaks, Single-Stranded , DNA Cleavage , Humans , Recombination, Genetic , Structure-Activity Relationship , Transposases/chemistry
10.
Genes Dev ; 33(1-2): 90-102, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30567997

ABSTRACT

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and nonself nucleic acids and maintain genome integrity and are essential for fertility in a variety of organisms. In Caenorhabditis elegans, most piRNA precursors are transcribed from two genomic clusters that contain thousands of individual piRNA transcription units. While a few genes have been shown to be required for piRNA biogenesis, the mechanism of piRNA transcription remains elusive. Here we used functional proteomics approaches to identify an upstream sequence transcription complex (USTC) that is essential for piRNA biogenesis. The USTC contains piRNA silencing-defective 1 (PRDE-1), SNPC-4, twenty-one-U fouled-up 4 (TOFU-4), and TOFU-5. The USTC forms unique piRNA foci in germline nuclei and coats the piRNA cluster genomic loci. USTC factors associate with the Ruby motif just upstream of type I piRNA genes. USTC factors are also mutually dependent for binding to the piRNA clusters and forming the piRNA foci. Interestingly, USTC components bind differentially to piRNAs in the clusters and other noncoding RNA genes. These results reveal the USTC as a striking example of the repurposing of a general transcription factor complex to aid in genome defense against transposons.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Gene Expression Regulation/genetics , RNA, Small Interfering/genetics , Amino Acid Motifs , Animals , Caenorhabditis elegans Proteins/genetics , Genome, Helminth/genetics , Protein Binding , Proteomics , RNA, Small Interfering/biosynthesis
11.
FEBS Lett ; 592(24): 4028-4038, 2018 12.
Article in English | MEDLINE | ID: mdl-30403291

ABSTRACT

Protein phosphatase-1 (PP1) drives a large amount of phosphoSer/Thr protein dephosphorylations in eukaryotes to counteract multiple kinases in signaling pathways. The phosphatase requires divalent metal cations for catalytic activity and contains iron naturally. Iron has been suggested to have an influence on PP1 activity through Fe2+ and Fe3+ oxidation states. However, much biochemical and all structural data have been obtained with recombinant PP1 containing Mn2+ ions. Purifying iron-containing PP1 from Escherichia coli has thus far not been possible. Here, we present the preparation, characterization, and structure of iron-bound PP1α in inactive and active states. We establish a key role for the electronic/redox properties of iron in PP1 activity and shed light on the difference in substrate specificity between iron- and manganese-containing PP1.


Subject(s)
Iron/metabolism , Manganese/metabolism , Protein Phosphatase 1/metabolism , Recombinant Proteins/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Humans , Models, Molecular , Oxidation-Reduction , Protein Domains , Protein Phosphatase 1/chemistry , Protein Phosphatase 1/genetics , Recombinant Proteins/chemistry , Substrate Specificity
12.
Nucleic Acids Res ; 46(8): 4152-4163, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29635476

ABSTRACT

Transposable elements are efficient DNA carriers and thus important tools for transgenesis and insertional mutagenesis. However, their poor target sequence specificity constitutes an important limitation for site-directed applications. The insertion sequence IS608 from Helicobacter pylori recognizes a specific tetranucleotide sequence by base pairing, and its target choice can be re-programmed by changes in the transposon DNA. Here, we present the crystal structure of the IS608 target capture complex in an active conformation, providing a complete picture of the molecular interactions between transposon and target DNA prior to integration. Based on this, we engineered IS608 variants to direct their integration specifically to various 12/17-nt long target sites by extending the base pair interaction network between the transposon and the target DNA. We demonstrate in vitro that the engineered transposons efficiently select their intended target sites. Our data further elucidate how the distinct secondary structure of the single-stranded transposon intermediate prevents extended target specificity in the wild-type transposon, allowing it to move between diverse genomic sites. Our strategy enables efficient targeting of unique DNA sequences with high specificity in an easily programmable manner, opening possibilities for the use of the IS608 system for site-specific gene insertions.


Subject(s)
DNA Transposable Elements , DNA, Bacterial/chemistry , Base Pairing , Base Sequence , Genetic Engineering , Helicobacter pylori/genetics , Models, Molecular , Nucleic Acid Conformation , Transposases/chemistry , Transposases/metabolism
13.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29551265

ABSTRACT

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Subject(s)
DNA, Bacterial/metabolism , Transposases/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , DNA Cleavage , DNA Transposable Elements/genetics , DNA, Bacterial/chemistry , Drug Resistance, Bacterial , Enterococcus faecalis/genetics , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Transposases/antagonists & inhibitors , Transposases/chemistry , Transposases/genetics
14.
Mol Microbiol ; 107(5): 639-658, 2018 03.
Article in English | MEDLINE | ID: mdl-29271522

ABSTRACT

Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini-Tn1549 can transpose in E. coli away from its natural Gram-positive host. We find the transposon-encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT-N6-AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.


Subject(s)
Conjugation, Genetic/genetics , DNA Transposable Elements/genetics , Enterococcus faecalis/genetics , Escherichia coli/genetics , Vancomycin Resistance/genetics , Amino Acid Sequence , Base Sequence , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Genetic Vectors , Integrases/metabolism , Mutation , Tyrosine/metabolism
15.
Sci Rep ; 7(1): 9903, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852099

ABSTRACT

The RNA-chaperone Hfq catalyses the annealing of bacterial small RNAs (sRNAs) with target mRNAs to regulate gene expression in response to environmental stimuli. Hfq acts on a diverse set of sRNA-mRNA pairs using a variety of different molecular mechanisms. Here, we present an unusual crystal structure showing two Hfq-RNA complexes interacting via their bound RNA molecules. The structure contains two Hfq6:A18 RNA assemblies positioned face-to-face, with the RNA molecules turned towards each other and connected via interdigitating base stacking interactions at the center. Biochemical data further confirm the observed interaction, and indicate that RNA-mediated contacts occur between Hfq-RNA complexes with various (ARN)X motif containing RNA sequences in vitro, including the stress response regulator OxyS and its target, fhlA. A systematic computational survey also shows that phylogenetically conserved (ARN)X motifs are present in a subset of sRNAs, some of which share similar modular architectures. We hypothesise that Hfq can co-opt RNA-RNA base stacking, an unanticipated structural trick, to promote the interaction of (ARN)X motif containing sRNAs with target mRNAs on a "speed-dating" fashion, thereby supporting their regulatory function.


Subject(s)
Escherichia coli Proteins/chemistry , Host Factor 1 Protein/chemistry , Nucleic Acid Conformation , RNA/chemistry , Amino Acid Motifs , Base Sequence , Binding Sites , Escherichia coli Proteins/metabolism , Host Factor 1 Protein/metabolism , Models, Molecular , Molecular Structure , Protein Binding , RNA/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Solutions/chemistry , Structure-Activity Relationship
16.
Elife ; 52016 12 23.
Article in English | MEDLINE | ID: mdl-28009253

ABSTRACT

Bacterial Xer site-specific recombinases play an essential genome maintenance role by unlinking chromosome multimers, but their mechanism of action has remained structurally uncharacterized. Here, we present two high-resolution structures of Helicobacter pylori XerH with its recombination site DNA difH, representing pre-cleavage and post-cleavage synaptic intermediates in the recombination pathway. The structures reveal that activation of DNA strand cleavage and rejoining involves large conformational changes and DNA bending, suggesting how interaction with the cell division protein FtsK may license recombination at the septum. Together with biochemical and in vivo analysis, our structures also reveal how a small sequence asymmetry in difH defines protein conformation in the synaptic complex and orchestrates the order of DNA strand exchanges. Our results provide insights into the catalytic mechanism of Xer recombination and a model for regulation of recombination activity during cell division.


Subject(s)
DNA/chemistry , DNA/metabolism , Helicobacter pylori/enzymology , Nucleic Acid Conformation , Recombinases/chemistry , Recombinases/metabolism , Hydrolysis , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Recombination, Genetic , X-Ray Diffraction
17.
Mol Ther ; 24(8): 1369-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27401040

ABSTRACT

Transposases are important tools in genome engineering, and there is considerable interest in engineering more efficient ones. Here, we seek to understand the factors determining their activity using the Sleeping Beauty transposase. Recent work suggests that protein coevolutionary information can be used to classify groups of physically connected, coevolving residues into elements called "sectors", which have proven useful for understanding the folding, allosteric interactions, and enzymatic activity of proteins. Using extensive mutagenesis data, protein modeling and analysis of folding energies, we show that (i) The Sleeping Beauty transposase contains two sectors, which span across conserved domains, and are enriched in DNA-binding residues, indicating that the DNA binding and endonuclease functions of the transposase coevolve; (ii) Sector residues are highly sensitive to mutations, and most mutations of these residues strongly reduce transposition rate; (iii) Mutations with a strong effect on free energy of folding in the DDE domain of the transposase significantly reduce transposition rate. (iv) Mutations that influence DNA and protein-protein interactions generally reduce transposition rate, although most hyperactive mutants are also located on the protein surface, including residues with protein-protein interactions. This suggests that hyperactivity results from the modification of protein interactions, rather than the stabilization of protein fold.


Subject(s)
DNA Transposable Elements , Transposases/genetics , Transposases/metabolism , Carrier Proteins/metabolism , Conserved Sequence , Genetic Vectors/genetics , Homologous Recombination , Models, Molecular , Mutagenesis , Mutation , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Stability , Structure-Activity Relationship , Transposases/chemistry
18.
Nat Commun ; 7: 11126, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-27025571

ABSTRACT

Sleeping Beauty (SB) is a prominent Tc1/mariner superfamily DNA transposon that provides a popular genome engineering tool in a broad range of organisms. It is mobilized by a transposase enzyme that catalyses DNA cleavage and integration at short specific sequences at the transposon ends. To facilitate SB's applications, here we determine the crystal structure of the transposase catalytic domain and use it to model the SB transposase/transposon end/target DNA complex. Together with biochemical and cell-based transposition assays, our structure reveals mechanistic insights into SB transposition and rationalizes previous hyperactive transposase mutations. Moreover, our data enables us to design two additional hyperactive transposase variants. Our work provides a useful resource and proof-of-concept for structure-based engineering of tailored SB transposases.


Subject(s)
Genetic Engineering , Mutation/genetics , Transposases/chemistry , Transposases/metabolism , Catalytic Domain , Crystallography, X-Ray , DNA Transposable Elements , Models, Molecular , Mutagenesis
19.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 11): 1492-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25372815

ABSTRACT

In bacteria, small RNAs (sRNAs) silence or activate target genes through base pairing with the mRNA, thereby modulating its translation. A central player in this process is the RNA chaperone Hfq, which facilitates the annealing of sRNAs with their target mRNAs. Hfq has two RNA-binding surfaces that recognize A-rich and U-rich sequences, and is believed to bind an sRNA-mRNA pair simultaneously. However, how Hfq promotes annealing remains unclear. Here, the crystal structure of Escherichia coli Hfq is presented in complex with U6-RNA bound to its proximal binding site at 0.97 Šresolution, revealing the Hfq-RNA interaction in exceptional detail.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli , Host Factor 1 Protein/chemistry , RNA, Bacterial/chemistry , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Host Factor 1 Protein/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Bacterial/genetics
20.
Nucleic Acids Res ; 42(22): 13525-33, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25398899

ABSTRACT

The thermophilic fungus Chaetomium thermophilum holds great promise for structural biology. To increase the efficiency of its biochemical and structural characterization and to explore its thermophilic properties beyond those of individual proteins, we obtained transcriptomics and proteomics data, and integrated them with computational annotation methods and a multitude of biochemical experiments conducted by the structural biology community. We considerably improved the genome annotation of Chaetomium thermophilum and characterized the transcripts and expression of thousands of genes. We furthermore show that the composition and structure of the expressed proteome of Chaetomium thermophilum is similar to its mesophilic relatives. Data were deposited in a publicly available repository and provide a rich source to the structural biology community.


Subject(s)
Chaetomium/genetics , Genome, Fungal , Molecular Sequence Annotation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Fungal , Introns , Proteome/metabolism , Pseudogenes , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...