Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
BMC Res Notes ; 17(1): 132, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730318

ABSTRACT

OBJECTIVES: Bovine seminal plasma proteins perform several functions related to sperm function. Changes in the expression pattern or abundance of seminal proteins are related to changes in the fertilizing capacity of bulls. Considering the role of seminal plasma proteins in sperm function and animal reproduction, we investigated changes in the protein abundance profile in response to sperm morphological changes using a proteomic approach. DATADESCRIPTION: In our present investigation, we employed liquid chromatography coupled with mass spectrometry to elucidate the proteomic composition of seminal plasma obtained from Nellore bulls exhibiting varying percentages of sperm abnormalities. Following semen collection, seminal plasma was promptly isolated from sperm, and proteins were subsequently precipitated, enzymatically digested using porcine trypsin, and subjected to analysis utilizing the Acquity nano UHPLC System in conjunction with a mass spectrometer. This dataset encompasses a total of 297 proteins, marking the inaugural instance in which a comparative profile of seminal plasma proteins in young Nellore bulls, categorized by their sperm abnormality percentages, has been delineated using LC-MS/MS. The comprehensive nature of this dataset contributes pivotal proteomic insights, representing a noteworthy advancement in our understanding of the reproductive biology of the Nellore breed.


Subject(s)
Proteome , Semen , Spermatozoa , Animals , Male , Cattle , Semen/metabolism , Semen/chemistry , Proteome/metabolism , Spermatozoa/metabolism , Tandem Mass Spectrometry , Proteomics/methods , Seminal Plasma Proteins/metabolism , Seminal Plasma Proteins/genetics , Chromatography, Liquid
2.
Front Mol Biosci ; 10: 1259026, 2023.
Article in English | MEDLINE | ID: mdl-38033385

ABSTRACT

Background: Plant protease inhibitors play a crucial role in inhibiting proteases produced by phytopathogens and exhibiting inhibitory effects on nematodes, fungi, and insects, making them promising candidates for crop protection. Specifically, carboxypeptidase inhibitors, a subset of proteinase inhibitors, have been extensively studied in potato and tomato of Solanaceae plant family. However, further research is needed to fully understand the functions and biotechnological potential of those inhibitors in plants. This work aimed to in silico characterize carboxypeptidase inhibitors from Solanaceae as potential antimicrobial and defense agents focused on biotechnological targets. Methods: The methodology employed involved search in UniProt, PDB, KNOTTIN, NCBI, and MEROPS databases for solanaceous carboxypeptidase inhibitors, phylogenetic relationships and conservation patterns analyzes using MEGA-X software and Clustal Omega/MView tools, physicochemical properties and antimicrobial potential prediction using ProtParam, ToxinPred, iAMPred, and APD3 tools, and structural features prediction using PSIPRED. Results and discussion: A systematic literature search was conducted to identify relevant studies on Solanaceae carboxypeptidase inhibitors and their activities against pathogens. The selected studies were reviewed and the main findings compiled. The characterization of Solanaceae carboxypeptidase inhibitors proposed for the first time the global sequence consensus motif CXXXCXXXXDCXXXXXCXXC, shedding light on carboxypeptidase inhibitors distribution, sequence variability, and conservation patterns. Phylogenetic analysis showed evolutionary relationships within the Solanaceae family, particularly in Capsicum, Nicotiana, and Solanum genera. Physicochemical characteristics of those peptides indicated their similarity to antimicrobial peptides. Predicted secondary structures exhibited variations, suggesting a broad spectrum of action, and studies had been demonstrated their activities against various pathogens. Conclusion: Carboxypeptidase inhibitors are being proposed here as a new subclass of PR-6 pathogenesis-related proteins, which will aid in a focused understanding of their functional roles in plant defense mechanisms. These findings confirm the Solanaceae carboxypeptidase inhibitors potential as defense agents and highlight opportunities for their biotechnological applications in pathogen control.

3.
Vet Sci ; 10(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37888562

ABSTRACT

This study aimed to evaluate the proteomic profile of seminal plasma from young Nellore bulls. We used 20 bulls aged between 19.8 and 22.7 months, divided into two groups according to the results of the Breeding Soundness Evaluation (BSE): approved (FIT n = 10) and not approved (UNFIT n = 10). The scrotal perimeter was measured and a semen collection was performed through electroejaculation. The percentage of sperm motility, mass motility, and sperm vigor were calculated using conventional microscopy, and the percentage of sperm abnormalities was calculated using phase-contrast microscopy of all ejaculates. Seminal plasma was separated from spermatozoa using centrifugation and processed for proteomic analysis by LC-MS/MS. Seminal plasma proteins were identified using MASCOT Daemon software v.2.4.0 and label-free quantification analysis was carried out by SCAFFOLD Q+ software v.4.0 using the Exponentially Modified Protein Abundance Index (emPAI) method. Functional classification of proteins was performed based on their genetic ontology terms using KOG. Functional cluster analysis was performed on DAVID. There were no differences in scrotal perimeter and physical semen characteristics between FIT and UNFIT groups of bulls. The percentage of sperm abnormalities was higher (p < 0.05) in the UNFIT group of bulls. A total of 297 proteins were identified for the two groups. There were a total of 11 differentially abundant proteins (p < 0.05), two of them more abundant in FIT bulls (Spermadhesin-1 and Ig gamma-1 chain C region) and nine in UNFIT bulls (Vasoactive intestinal peptide, Metalloproteinase inhibitor 2, Ig lambda-1 chain C regions, Protein FAM3C, Hemoglobin beta, Seminal ribonuclease, Spermadhesin 2, Seminal plasma protein BSP-30kDa, and Spermadhesin Z13). Spermadhesin-1 was the protein with the highest relative abundance (36.7%) in the seminal plasma among all bulls, corresponding to 47.7% for the FIT bulls and 25,7% for the UNFIT bulls. Posttranslational modification, protein turnover, and chaperones were the functional categories with the highest number of classified proteins. Protein functional annotation clusters were related to Phospholipid efflux, ATP binding, and chaperonin-containing T-complex. The differentially abundant proteins in the group of FIT bulls were related to sperm capacitation and protection against reactive species of oxygen. In contrast, differentially expressed proteins in the group of UNFIT bulls were related to motility inhibition, intramembrane cholesterol removal and oxidative stress. In conclusion, the proteomic profile of the seminal plasma of FIT bulls presents proteins with participation in several biological processes favorable to fertilization, while the proteins of the seminal plasma of UNFIT bulls indicate a series of alterations that can compromise the fertilizing capacity of the spermatozoa. In addition, the relative abundance of spermadhesin-1 found in the seminal plasma of young Nellore bulls could be studied as a reproductive parameter for selection.

4.
Biol Reprod ; 109(6): 878-891, 2023 12 11.
Article in English | MEDLINE | ID: mdl-37702320

ABSTRACT

Sexual rest is a transient condition, which compromises conception rates, characterized by large volumes of ejaculate with high percentages of dead sperm observed in bulls. The biochemical mechanisms leading to this ejaculate pattern are not fully understood. Six adult resting Nellore bulls were submitted to Breeding Soundness Evaluation by four consecutive semen collections through the electroejaculation method during a 30 min period. Each ejaculate had its semen phenotypic parameters; morphology and physical aspects were evaluated. To assess enzymatic activity (superoxide dismutase, catalase, and glutathione S-transferase), lipid peroxidation (concentrations of malondialdehyde and nitric oxide), fatty acid, and proteomic profile aliquots of spermatozoa from the first and fourth ejaculates were used. All sperm parameters differed between the first and fourth ejaculates. Spermatozoa from the first ejaculate showed lower enzymatic activity and a higher concentration of lipid peroxidation markers. Among the 19 identified fatty acids, 52.7% are polyunsaturated. Relative abundance analysis showed that C12:0 and C18:0 fatty acids differed between the first and fourth ejaculates, being the fourth ejaculate richer in spermatozoa. The proteomics analysis identified a total of 974 proteins in both sample groups (first and fourth ejaculates). The majority of identified proteins are related to cellular processes and signaling. Quantitative proteomics showed 36 differentially abundant proteins, 6 up-regulated proteins in the first ejaculate, and 30 up-regulated proteins in the fourth ejaculate. Spermatozoa from bulls at sexual rest have less antioxidant capacity, causing changes in their fatty acid composition and protein profile, which generates the observed sperm pattern and lower fertilization capacity.


Subject(s)
Proteomics , Semen , Male , Cattle , Animals , Spermatozoa , Semen Analysis/veterinary , Oxidative Stress , Fatty Acids , Sperm Motility
5.
Mol Nutr Food Res ; 67(12): e2200308, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36938670

ABSTRACT

SCOPE: Human milk (HM) has a wide range of proteins with biological and nutritional functions, essential for newborns. The roles of proteins and their proteoforms in HM are not fully understood. This study aims to assess, by 2-DE proteomics, the differential proteoforms in HM, present in colostrum (COL), transition (TRA), and mature milk (MAT), aiming to contribute to understanding neonates' protein needs. METHODS AND RESULTS: HM samples are collected from 39 healthy lactating women. COL presents the higher concentration of essential amino acids. After MALDI-MS/MS and bioinformatics analysis, proteoforms are differentially detected. Abundances of ß-casein (CSN2), α-s1 casein, and α-lactalbumin (LALBA) are higher in MAT; CSN2s are found in 11 spots and the isoforms increase in size as the pI becomes more acidic; regarding LALBA, two variant forms are found with different abundances in TRA and MAT; CSN2, LALBA, lactotransferrin (LTF), and serum albumin forms are present in all lactation phases. CONCLUSION: This study reveals differential proteoforms in COL involved in tissue growth and body development, besides essential amino acids, and, in MAT, involved in muscle mass gain, strengthening of the immune system, and energy production. The results provide new insight about proteoforms involved in maturation of the newborn's organs and systems.


Subject(s)
Caseins , Milk, Human , Infant, Newborn , Female , Humans , Animals , Milk, Human/chemistry , Caseins/analysis , Lactation , Lactalbumin , Lactoferrin , Serum Albumin/analysis , Proteomics , Tandem Mass Spectrometry , Milk/chemistry , Transcription Factors , Amino Acids, Essential , Milk Proteins/chemistry
6.
Sci Rep ; 12(1): 18690, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333376

ABSTRACT

Horses are seasonal polyoestrous animals, and the photoperiod is the main factor modulating their reproductive activity. There is no consensus on the andrological and biochemical factors that influence breeding seasonality. To assess the involvement of climate in reproduction, Mangalarga Marchador stallions were monitored over 1 year regarding semen quality and seminal plasma proteome. Here, we show that kallikrein (KLKs) proteoforms in seminal plasma are involved in climate conditioning of reproduction. During the breeding season, greater abundance and different types of KLKs occurred simultaneously to lower sperm motility, greater semen volumes and higher concentrations of glucose and cholesterol. Considering that vasodilation due to activation of the kallikrein-kinin system and the consequent inhibition of the renin-angiotensin system may be associated with lower sperm motility, unravelling the involvement of KLK proteoforms in reproductive seasonality is a priority in horse breeding.


Subject(s)
Semen Analysis , Sperm Motility , Horses , Male , Animals , Sperm Motility/physiology , Kallikreins , Semen/physiology , Reproduction/physiology , Spermatozoa/physiology
7.
Appl Microbiol Biotechnol ; 105(20): 7857-7869, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34554273

ABSTRACT

Alternative strategies to antibiotic treatment are required to inhibit pathogens, including Staphylococcus aureus. Bacteriocins, such as the lantibiotic bovicin HC5, have shown potential to control pathogens. This study aims to evaluate the stress response of S. aureus to bovicin HC5 using a proteomic approach. Sublethal concentrations of the bacteriocin repressed the synthesis of 62 cytoplasmic proteins, whereas 42 proteins were induced in S. aureus COL. Specifically, synthesis of several proteins involved in amino acid biosynthesis, mainly products of ilv-leu operon, and DNA metabolism, such as DNA polymerase I, decreased following bovicin treatment while proteins involved in catabolism, mainly tricarboxylic acid cycle metabolism, and chaperones were over-expressed. The levels of CodY and CcpA, important regulators involved in the stationary phase adaptation and catabolite repression, respectively, also increased in the presence of the bacteriocin. These results indicate that stress caused by the sublethal concentration of bovicin HC5 in the cell membrane results in growth reduction, reduced protein synthesis, and, at the same time, enhanced the levels of chaperones and enzymes involved in energy-efficient catabolism in an attempt to restore energy and cell homeostasis. These results bring relevant information to amplify the knowledge concerning the bacterial physiological changes in response to the stress caused by the cell exposition to bovicin HC5. New potential targets for controlling this pathogen can also be determined from the new protein expression pattern presented. KEY POINTS: • Bovicin HC5 changed the synthesis of cytoplasmic proteins of S. aureus. • Bovicin HC5 interfered in the synthesis of proteins of amino acids biosynthesis. • Synthesis of chaperones enhanced in the presence of sublethal dosage of bovicin HC5.


Subject(s)
Bacteriocins , Anti-Bacterial Agents/pharmacology , Cell Membrane , Proteomics , Staphylococcus aureus
8.
Food Chem ; 337: 127954, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32919268

ABSTRACT

Lipases are associated with food spoilage and are also used in various biotechnological applications. In this study, we sought to purify, identify, and characterize a lipase from S. liquefaciens isolated from cold raw cow's milk. The lipase partially purified by ultrafiltration and gel filtration showed a specific activity of 2793 U/mg. By zymography, the enzyme presented approximately 65 kDa, and LC-MS/MS allowed the identification of a polyurethanase with a conserved domain of family I.3 lipase. The modeled and validated structure of polyurethanase was able to bind to different fatty acids and urethane by molecular docking. The polyurethanase showed optimum activity at pH 8.0 and 30 °C. In the presence of ions, activity was decreased, except for Ca2+, Mg2+, and Ba2+. Reducing agents did not alter the activity, while amino acid modifiers reduced enzyme activity. It is concluded that polyurethanase with lipase activity represents a potential enzyme for the deterioration of milk and dairy products, as well as a candidate for industrial applications.


Subject(s)
Lipase/metabolism , Milk/microbiology , Serratia liquefaciens/enzymology , Animals , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cattle , Chromatography, Gel , Chromatography, Liquid , Fatty Acids/metabolism , Female , Lipase/isolation & purification , Molecular Docking Simulation , Protein Conformation , Tandem Mass Spectrometry , Urethane/metabolism
9.
Int J Microbiol ; 2020: 9309628, 2020.
Article in English | MEDLINE | ID: mdl-32351575

ABSTRACT

In this study, five bacteriocin-producing Lactococcus lactis strains were identified from different naturally fermented Brazilian sausages. Ion exchange and reversed-phase chromatographies were used to purify the bacteriocins from culture supernatant of the five strains. Mass spectrometry (MALDI-TOF/TOF) showed that the molecular masses of the bactericoins from L. lactis ID1.5, ID3.1, ID8.5, PD4.7, and PR3.1 were 3330.567 Da, 3330.514 Da, 3329.985 Da, 3329.561 Da, and 3329.591 Da, respectively. PCR product sequence analysis confirmed that the structural genes of bacteriocins produced by the five isolates are identical to the lantibiotic nisin Z. Optimal nisin Z production was achieved in tryptone and casein peptone, at pH 6.0 or 6.5. The most favorable temperatures for nisin Z production were 25°C and 30°C, and its production was better under aerobic than anaerobic condition. The type of carbon source appeared to be an important factor for nisin Z production. While sucrose was found to be the most efficient carbon source for nisin Z production by four L. lactis isolates, fructose was the best for one isolate. Lactose was also a good energy source for nisin Z production. Surprisingly, glucose was clearly the poorest carbon source for nisin Z production. The five isolates produced different amounts of the bacteriocin, L. lactis ID1.5 and ID8.5 isolates being the best nisin Z producers. DNA sequence analysis did not reveal any sequence differences in the nisZ and nisF promoter regions that could explain the differences in nisin Z production, suggesting that there should be other factors responsible for differential nisin Z production by the isolates.

10.
Arch Virol ; 165(1): 69-85, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31705208

ABSTRACT

Herpesviruses are predicted to express more than 80 proteins during their infection cycle. The proteins synthesized by the immediate early genes and early genes target signaling pathways in host cells that are essential for the successful initiation of a productive infection and for latency. In this study, proteomic and phosphoproteomic tools showed the occurrence of changes in Madin-Darby bovine kidney cells at the early stage of the infection by bovine herpesvirus 1 (BoHV-1). Proteins that had already been described in the early stage of infection for other herpesviruses but not for BoHV-1 were found. For example, stathmin phosphorylation at the initial stage of infection is described for the first time. In addition, two proteins that had not been described yet in the early stages of herpesvirus infections in general were ribonuclease/angiogenin inhibitor and Rab GDP dissociation inhibitor beta. The biological processes involved in these cellular responses were repair and replication of DNA, splicing, microtubule dynamics, and inflammatory responses. These results reveal pathways that might be used as targets for designing antiviral molecules against BoHV-1 infection.


Subject(s)
Herpesviridae Infections/metabolism , Herpesvirus 1, Bovine/pathogenicity , Proteomics/methods , Viral Proteins/metabolism , Animals , Cattle , Cell Line , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/metabolism , Immediate-Early Proteins/metabolism , Mass Spectrometry , Phosphorylation , Protein Interaction Maps , Stathmin/metabolism , Virus Replication
11.
Food Res Int ; 107: 406-413, 2018 05.
Article in English | MEDLINE | ID: mdl-29580501

ABSTRACT

Canastra artisanal Minas cheese samples were collected in Minas Gerais - Brazil. The samples were evaluated in order to observe the presence of antimicrobial peptides during 30 days of ripening. Soluble peptides extracted from the cheeses were fractionated by reverse phase liquid chromatography and their fractions evaluated for inhibitory action of E. coli. Fractions containing antimicrobial activity were analyzed by MALDI-TOF/TOF and then peptides were sequenced and identified using MASCOT Daemon coupled with UniProt database. The identified peptides were then validated by SCAFFOLD application. The peptides present in fractions with antimicrobial activity were RPKHPIKHQ, RPKHPIKHQG, RPKHPIKHQGLPQ and RPKHPIKHQGLPQE, HQPHQPLPPT and MHQPHQPLPPT. Peptide sequences PKHPIKHQ, RPKHPIKHQG, RPKHPIKHQGLPQ and RPKHPIKHQGLPQE were originated from αs1-casein and are their fragments belonging to Isracidine, which in turn is a well known antimicrobial peptide. The HQPHQPLPPT and MHQPHQPLPPT peptides were related to ß-casein and were isolated in other studies, but their biological activities are still unknown.


Subject(s)
Anti-Bacterial Agents/analysis , Caseins/analysis , Cheese/analysis , Cheese/microbiology , Escherichia coli/metabolism , Peptides/analysis , Peptides/metabolism
12.
Appl Biochem Biotechnol ; 185(4): 884-908, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29372419

ABSTRACT

This review is focused on the state-of-art of peptides with inhibitory activity towards angiotensin I-converting enzyme (ACE) - thus, with anti-hypertensive potential - derived from enzymatic hydrolysis of caseins. Firstly, molecular characteristics of caseins relevant to a better understanding of this subject were concisely commented. Next, a brief description of the pathophysiology of hypertension was explained, focusing on the ACE role in regulation of blood pressure in human body. Then, casein-derived peptides with ACE inhibitory capacity were specifically addressed. The main in vitro and in vivo bioassays often reported in literature to assess the anti-hypertensive potential of peptides were presented, illustrated with recently published studies, and discussed in terms of advantages and limitations of both approaches. Characteristics related to amino acid composition and sequence of peptides with high ACE-inhibitory potential were also commented. Process parameters of enzymatic hydrolysis (types and origins of casein substrates, types of enzymes, pH, temperature, and times of reactions) were discussed. Patents dealing with casein-derived anti-hypertensive peptides were examined not only in terms of amino acid sequences, but also regarding their novelty claims in hydrolysis process parameters. Finally, some trends, challenges, and opportunities inferred from this literature analysis were commented, emphasizing the importance of this research topic in food products development.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Caseins/chemistry , Food Handling , Peptidyl-Dipeptidase A , Animals , Cattle , Humans , Hydrolysis
13.
Funct Integr Genomics ; 18(1): 11-21, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28856505

ABSTRACT

Late blight is one of the most destructive diseases of the tomato, resulting in substantial economic losses. There is difficulty in controlling this disease, so the molecular characterization of tomato genotypes may help in the selection of higher resistance tomato plants against Phytophthora infestans, late blight's pathogen. The objective was to analyze the differences with regard to the constitutive proteome between the access Vegetable Germplasm Bank (BGH)-2127, resistant genotype, and Santa Clara-susceptible genotype to late blight. Proteomic analysis of leaf samples by two-dimensional electrophoresis (2-DE) followed by identification by mass spectrometry (MALDI TOF/TOF) was performed. Nineteen proteins were identified, which were then related to metabolism and energy, photosynthesis, transcription, stress, and defenses. Approximately 90% of these proteins were more abundant in Santa Clara, a susceptible cultivar. Acidic 26 kDa endochitinase and ribonuclease T2 proteins were more abundant in BGH-2127 access. The enzymatic activity confirmed a greater abundance of chitinase in the BGH-2127 access as compared to the cultivar Santa Clara. Gene expression analyses by real-time PCR demonstrated that the mRNA levels were not correlated with the respective protein levels. Abundance of the acidic 26 kDa endochitinase and ribonuclease T2 proteins in the constitutive proteomes of BGH-2127 may be associated with the answer to the resistance of this access.


Subject(s)
Disease Resistance , Phytophthora infestans/physiology , Plant Diseases/immunology , Plant Proteins/analysis , Proteome/analysis , Solanum lycopersicum/chemistry , Gene Expression Regulation, Plant , Genotype , Host-Pathogen Interactions , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/metabolism , Proteomics/methods
14.
Article in English | MEDLINE | ID: mdl-29024043

ABSTRACT

The ants use their venom for predation, defense, and communication. The venom of these insects is rich in peptides and proteins, and compared with other animal venoms, ant venoms remain poorly explored. The objective of this study was to evaluate the protein content of the venom in the Ponerinae ant Pachycondyla striata. Venom samples were collected by manual gland reservoir dissection, and samples were submitted to two-dimensional gel electrophoresis and separation by ion-exchange and reverse-phase high-performance liquid chromatography followed by mass spectrometry using tanden matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF/TOF) mass spectrometry and electrospray ionization-quadrupole with time-of-flight (ESI-Q/TOF) mass spectrometry for obtaining amino acid sequence. Spectra obtained were searched against the NCBInr and SwissProt database. Additional analysis was performed using PEAKS Studio 7.0 (Sequencing de novo). The venom of P. striata has a complex mixture of proteins from which 43 were identified. Within the identified proteins are classical venom proteins (phospholipase A, hyaluronidase, and aminopeptidase N), allergenic proteins (different venom allergens), and bioactive peptides (U10-ctenitoxin Pn1a). Venom allergens are among the most expressed proteins, suggesting that P. striata venom has high allergenic potential. This study discusses the possible functions of the proteins identified in the venom of P. striata.


Subject(s)
Ant Venoms/chemistry , Ants/physiology , Insect Proteins/chemistry , Proteomics , Animals
15.
FEMS Microbiol Lett ; 364(12)2017 07 03.
Article in English | MEDLINE | ID: mdl-28637209

ABSTRACT

Novel compounds and innovative methods are required considering that antibiotic resistance has reached a crisis point. In the study, two cell-bound antimicrobial compounds produced by Lactococcus lactis ID1.5 were isolated and partially characterized. Following purification by cationic exchange and a solid-phase C18 column, antimicrobial activity was recovered after three runs of RPC using 60% (v/v) and 100% (v/v) of 2-propanol for elution, suggesting that more than one antimicrobial compound were produced by L. lactis ID1.5, which were in this study called compounds AI and AII. The mass spectrum of AI and AII showed major intensity ions at m/z 1070.05 and 955.9 Da, respectively. The compound AI showed a spectrum of antimicrobial activity mainly against L. lactis species, while the organisms most sensitive to compound AII were Bacillus subtilis, Listeria innocua, Streptococcus pneumoniae and Pseudomonas aeruginosa. The antimicrobial activity of both compounds was suppressed by treatment with Tween 80. Nevertheless, both compounds showed high stability to heat and proteases treatments. The isolated compounds, AI and AII, showed distinct properties from other antimicrobial substances already reported as produced by L. lactis, and have a significant inhibitory effect against two clinically important respiratory pathogens.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacteriocins/isolation & purification , Bacteriocins/pharmacology , Lactococcus lactis/chemistry , Anti-Bacterial Agents/chemistry , Bacillus subtilis/drug effects , Bacteriocins/chemistry , Bacteriocins/metabolism , Food Microbiology , Lactobacillaceae/drug effects , Lactococcus lactis/isolation & purification , Lactococcus lactis/metabolism , Listeria/drug effects , Polysorbates , Pseudomonas aeruginosa/drug effects , Streptococcus pneumoniae/drug effects
16.
PLoS One ; 12(1): e0170294, 2017.
Article in English | MEDLINE | ID: mdl-28103301

ABSTRACT

Proteins are the major constituents of muscle and are key molecules regulating the metabolic changes during conversion of muscle to meat. Brazil is one of the largest exporters of beef and most Brazilian cattle are composed by zebu (Nellore) genotype. Bos indicus beef is generally leaner and tougher than Bos taurus such as Angus. The aim of this study was to compare the muscle proteomic and phosphoproteomic profile of Angus and Nellore. Seven animals of each breed previously subjected the same growth management were confined for 84 days. Proteins were extracted from Longissimus lumborum samples collected immediately after slaughter and separated by two-dimensional electrophoresis. Pro-Q Diamond stain was used in phosphoproteomics. Proteins identification was performed using matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Tropomyosin alpha-1 chain, troponin-T, myosin light chain-1 fragment, cytoplasmic malate dehydrogenase, alpha-enolase and 78 kDa glucose-regulated protein were more abundant in Nellore, while myosin light chain 3, prohibitin, mitochondrial stress-70 protein and heat shock 70 kDa protein 6 were more abundant in Angus (P<0.05). Nellore had higher phosphorylation of myosin regulatory light chain-2, alpha actin-1, triosephosphate isomerase and 14-3-3 protein epsilon. However, Angus had greater phosphorylation of phosphoglucomutase-1 and troponin-T (P<0.05). Therefore, proteins involved in contraction and muscle organization, myofilaments expressed in fast or slow-twitch fibers and heat shock proteins localized in mitochondria or sarcoplasmic reticulum and involved in cell flux of calcium and apoptosis might be associated with differences in beef quality between Angus and Nellore. Furthermore, prohibitin appears to be a potential biomarker of intramuscular fat in cattle. Additionally, differences in phosphorylation of myofilaments and glycolytic enzymes could be involved with differences in muscle contraction force, susceptibility to calpain, apoptosis and postmortem glycolysis, which might also be related to differences in beef quality among Angus and Nellore.


Subject(s)
Cattle/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Animals , Apoptosis , Brazil , Breeding , Cattle/classification , Electrophoresis, Gel, Two-Dimensional , Food Quality , Glucose/metabolism , Heat-Shock Proteins/metabolism , Male , Muscle Contraction/physiology , Phosphoproteins/metabolism , Prohibitins , Protein Array Analysis , Protein Interaction Maps , Proteomics , Red Meat/analysis , Repressor Proteins/metabolism , Species Specificity
17.
Microb Pathog ; 102: 148-159, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27916690

ABSTRACT

Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules.


Subject(s)
4-Butyrolactone/analogs & derivatives , Acids/metabolism , Bacterial Proteins/metabolism , Salmonella enteritidis/drug effects , Salmonella enteritidis/physiology , 4-Butyrolactone/pharmacology , Ethanol/metabolism , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Quorum Sensing , Salmonella enteritidis/growth & development
18.
Parasitol Int ; 65(6 Pt A): 668-676, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27597118

ABSTRACT

In this work we analyzed protein expression in the Aedes aegypti midgut during the larval (fourth instar, L4), pupal, and adult stages [including newly emerged (NE), sugar-fed (SF) and blood-fed (BF) females]. Two-dimensional electrophoresis showed 13 spots in the midgut of larvae, 95 in the midgut of pupae, 90 in the midgut of NE, and 76 in the midgut of SF or BF females. In the larval midguts, high serpin expression was noted, while in the pupae, protein abundance was lower than in the NE, SF, and BF females. The spots related to proteins linked to energy production, protein metabolism, signaling, and transport were highly expressed in the NE stage, while spots related proteins involved in translation were abundant in SF and BF females. The differential abundance of proteins in the midgut of A. aegypti at different developmental stages supports the necessity for midgut development during immature stage followed by the necessity of proteins related to digestion in adults.


Subject(s)
Aedes/embryology , Gastrointestinal Tract/embryology , Gastrointestinal Tract/metabolism , Intestinal Mucosa/metabolism , Larva/growth & development , Proteomics , Aedes/growth & development , Animals , Energy Metabolism/physiology , Female , Larva/metabolism , Protein Transport/physiology , Proteins/genetics , Proteins/metabolism , Pupa/metabolism , Serpins/biosynthesis , Signal Transduction
19.
Theriogenology ; 86(3): 766-777.e2, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27118515

ABSTRACT

The Binder of SPerm 1 (BSP1) protein is involved in the fertilization and semen cryopreservation processes and is described to be both beneficial and detrimental to sperm. Previously, the relationship of BSP1 with freezability events has not been completely understood. The objective of this work was to determine the differential abundance of the forms of the BSP1 protein in cryopreserved seminal plasma of Bos taurus indicus bulls with different patterns of semen freezability using proteomics. A wide cohort of adult bulls with high genetic value from an artificial insemination center was used as donors of high quality, fresh semen. Nine bulls presenting different patterns of semen freezability were selected. Two-dimensional gel electrophoresis showed differential abundance in a group of seven protein spots in the frozen/thawed seminal plasma from the bulls, ranging from 15 to 17 kDa, with pI values from 4.6 to 5.8. Four of these spots were confirmed to be BSP1 using mass spectrometry, proteomics, biochemical, and computational analysis (Tukey's test at P < 0.05). The protein spot weighing 15.52 ± 0.53 kDa with a pI value of 5.78 ± 0.12 is highlighted by its high abundance in bulls with low semen freezability and its absence in bulls presenting high semen freezability. This is the first report showing that more than two forms of BSP1 are found in the seminal plasma of Nelore adult bulls and not all animals have a similar abundance of each BSP1 form. Different BSP1 forms may be involved in different events of fertilization and the cryopreservation process.


Subject(s)
Cattle/physiology , Cryopreservation/veterinary , Semen Preservation/veterinary , Semen/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Animals , Cattle/genetics , Freezing , Male , Protein Isoforms , Semen/physiology , Seminal Vesicle Secretory Proteins/classification
20.
BMC Genomics ; 17(Suppl 12): 999, 2016 12 15.
Article in English | MEDLINE | ID: mdl-28105928

ABSTRACT

BACKGROUND: Antimicrobial peptides from plants present mechanisms of action that are different from those of conventional defense agents. They are under-explored but have a potential as commercial antimicrobials. Bell pepper leaves ('Magali R') are discarded after harvesting the fruit and are sources of bioactive peptides. This work reports the isolation by peptidomics tools, and the identification and partially characterization by computational tools of an antimicrobial peptide from bell pepper leaves, and evidences the usefulness of records and the in silico analysis for the study of plant peptides aiming biotechnological uses. RESULTS: Aqueous extracts from leaves were enriched in peptide by salt fractionation and ultrafiltration. An antimicrobial peptide was isolated by tandem chromatographic procedures. Mass spectrometry, automated peptide sequencing and bioinformatics tools were used alternately for identification and partial characterization of the Hevein-like peptide, named HEV-CANN. The computational tools that assisted to the identification of the peptide included BlastP, PSI-Blast, ClustalOmega, PeptideCutter, and ProtParam; conventional protein databases (DB) as Mascot, Protein-DB, GenBank-DB, RefSeq, Swiss-Prot, and UniProtKB; specific for peptides DB as Amper, APD2, CAMP, LAMPs, and PhytAMP; other tools included in ExPASy for Proteomics; The Bioactive Peptide Databases, and The Pepper Genome Database. The HEV-CANN sequence presented 40 amino acid residues, 4258.8 Da, theoretical pI-value of 8.78, and four disulfide bonds. It was stable, and it has inhibited the growth of phytopathogenic bacteria and a fungus. HEV-CANN presented a chitin-binding domain in their sequence. There was a high identity and a positive alignment of HEV-CANN sequence in various databases, but there was not a complete identity, suggesting that HEV-CANN may be produced by ribosomal synthesis, which is in accordance with its constitutive nature. CONCLUSIONS: Computational tools for proteomics and databases are not adjusted for short sequences, which hampered HEV-CANN identification. The adjustment of statistical tests in large databases for proteins is an alternative to promote the significant identification of peptides. The development of specific DB for plant antimicrobial peptides, with information about peptide sequences, functional genomic data, structural motifs and domains of molecules, functional domains, and peptide-biomolecule interactions are valuable and necessary.


Subject(s)
Anti-Infective Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Biotechnology , Capsicum/chemistry , Plant Leaves/chemistry , Plant Lectins/chemistry , Amino Acid Sequence , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Capsicum/metabolism , Chromatography, Reverse-Phase , Databases, Protein , Mass Spectrometry , Molecular Sequence Data , Peptides/analysis , Peptides/isolation & purification , Plant Leaves/metabolism , Plant Lectins/isolation & purification , Plant Lectins/pharmacology , Plant Proteins/analysis , Plant Proteins/metabolism , Proteomics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...