Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotrauma Rep ; 3(1): 398-414, 2022.
Article in English | MEDLINE | ID: mdl-36204386

ABSTRACT

NFL players, by virtue of their exposure to traumatic brain injury (TBI), are at higher risk of developing dementia and Alzheimer's disease (AD) than the general population. Early recognition and intervention before the onset of clinical symptoms could potentially avert/delay the long-term consequences of these diseases. Given that AD is thought to have a long pre-clinical incubation period, the aim of the current research was to determine whether former NFL players show evidence of incipient dementia in their structural imaging before diagnosis of AD. To identify neuroimaging markers of AD, against which former NFL players would be compared, we conducted a whole-brain volumetric analysis using a cohort of AD patients (ADNI clinical database) to produce a set of brain regions demonstrating sensitivity to early AD pathology (i.e., the "AD fingerprint"). A group of 46 former NFL players' brain magnetic resonance images were then interrogated using the AD fingerprint, that is, the former NFL subjects were compared volumetrically to AD patients using a T1-weighted magnetization-prepared rapid gradient echo sequence. The FreeSurfer image analysis suite (version 6.0) was used to obtain volumetric and cortical thickness data. The Automated Neuropsychological Assessment Metric-Version 4 was used to assess current cognitive functioning. A total of 55 brain regions demonstrated significant atrophy or ex vacuo dilatation bilaterally in AD patients versus controls. Of the 46 former NFL players, 41% demonstrated a greater than expected number of atrophied/dilated AD regions compared with age-matched controls, presumably reflecting AD pathology.

2.
J Med Chem ; 55(2): 709-16, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22175799

ABSTRACT

Osteoarthritis (OA) is a nonsystemic disease for which no oral or parenteral disease-modifying osteoarthritic drug (DMOAD) is currently available. Matrix metalloproteinase 13 (MMP-13) has attracted attention as a target with disease-modifying potential because of its major role in tissue destruction associated with OA. Being localized to one or a few joints, OA is amenable to intra-articular (IA) therapy, which has distinct advantages over oral therapies in terms of increasing therapeutic index, by maximizing drug delivery to cartilage and minimizing systemic exposure. Here we report on the synthesis and biological evaluation of a non-zinc binding MMP-13 selective inhibitor, 4-methyl-1-(S)-({5-[(3-oxo-3,4-dihydro-2H-benzo[1,4]oxazin-6-ylmethyl)carbamoyl]pyrazolo[1,5-a]pyrimidine-7-carbonyl}amino)indan-5-carboxylic acid (1), that is uniquely suited as a potential IA-DMOAD: it has long durability in the joint, penetrates cartilage effectively, exhibits nearly no detectable systemic exposure, and has remarkable efficacy.


Subject(s)
Antirheumatic Agents/chemical synthesis , Benzoxazines/chemical synthesis , Indans/chemical synthesis , Matrix Metalloproteinase Inhibitors , Osteoarthritis/drug therapy , Animals , Antirheumatic Agents/pharmacokinetics , Antirheumatic Agents/pharmacology , Benzoxazines/pharmacokinetics , Benzoxazines/pharmacology , Cartilage, Articular/metabolism , Cattle , In Vitro Techniques , Indans/pharmacokinetics , Indans/pharmacology , Injections, Intra-Articular , Male , Permeability , Rats , Rats, Sprague-Dawley , Solubility , Stereoisomerism
3.
Arthritis Rheum ; 60(7): 2008-18, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19565489

ABSTRACT

OBJECTIVE: Matrix metalloproteinases (MMPs) have long been considered excellent targets for osteoarthritis (OA) treatment. However, clinical utility of broad-spectrum MMP inhibitors developed for this purpose has been restricted by dose-limiting musculoskeletal side effects observed in humans. This study was undertaken to identify a new class of potent and selective MMP-13 inhibitors that would provide histologic and clinical efficacy without musculoskeletal toxicity. METHODS: Selectivity assays were developed using catalytic domains of human MMPs. Freshly isolated bovine articular cartilage or human OA cartilage was used in in vitro cartilage degradation assays. The rat model of monoiodoacetate (MIA)-induced OA was implemented for assessing the effects of MMP-13 inhibitors on cartilage degradation and joint pain. The surgical medial meniscus tear model in rats was used to evaluate the chondroprotective ability of MMP-13 inhibitors in a chronic disease model of OA. The rat model of musculoskeletal side effects (MSS) was used to assess whether selective MMP-13 inhibitors have the joint toxicity associated with broad-spectrum MMP inhibitors. RESULTS: A number of non-hydroxamic acid-containing compounds that showed a high degree of potency for MMP-13 and selectivity against other MMPs were designed and synthesized. Steady-state kinetics experiments and Lineweaver-Burk plot analysis of rate versus substrate concentration with one such compound, ALS 1-0635, indicated linear, noncompetitive inhibition, and Dixon plot analysis from competition studies with a zinc chelator (acetoxyhydroxamic acid) and ALS 1-0635 demonstrated nonexclusive binding. ALS 1-0635 inhibited bovine articular cartilage degradation in a dose-dependent manner (48.7% and 87.1% at 500 nM and 5,000 nM, respectively) and was effective in inhibiting interleukin-1alpha- and oncostatin M-induced C1,C2 release in human OA cartilage cultures. ALS 1-0635 modulated cartilage damage in the rat MIA model (mean +/- SEM damage score 1.3 +/- 0.3, versus 2.2 +/- 0.4 in vehicle-treated animals). Most significantly, when treated twice daily with oral ALS 1-0635, rats with surgically induced medial meniscus tear exhibited histologic evidence of chondroprotection and reduced cartilage degeneration, without observable musculoskeletal toxicity. CONCLUSION: The compounds investigated in this study represent a novel class of MMP-13 inhibitors. They are mechanistically distinct from previously reported broad-spectrum MMP inhibitors and do not exhibit the problems previously associated with these inhibitors, including selectivity, poor pharmacokinetics, and MSS liability. MMP-13 inhibitors exert chondroprotective effects and can potentially modulate joint pain, and are, therefore, uniquely suited as potential disease-modifying osteoarthritis drugs.


Subject(s)
Enzyme Inhibitors/therapeutic use , Matrix Metalloproteinase Inhibitors , Musculoskeletal System/pathology , Osteoarthritis/drug therapy , Animals , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/surgery , Cattle , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Humans , Interleukin-1alpha/pharmacology , Iodoacetates/pharmacology , Iodoacetates/therapeutic use , Iodoacetic Acid/adverse effects , Male , Musculoskeletal System/drug effects , Oncostatin M/pharmacology , Osteoarthritis/chemically induced , Osteoarthritis/pathology , Rats , Rats, Sprague-Dawley , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...