Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 33(6): 1210-1221, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35658441

ABSTRACT

Inhibition of intracellular nicotinamide phosphoribosyltransferase (NAMPT) represents a new mode of action for cancer-targeting antibody-drug conjugates (ADCs) with activity also in slowly proliferating cells. To extend the repertoire of available effector chemistries, we have developed a novel structural class of NAMPT inhibitors as ADC payloads. A structure-activity relationship-driven approach supported by protein structural information was pursued to identify a suitable attachment point for the linker to connect the NAMPT inhibitor with the antibody. Optimization of scaffolds and linker structures led to highly potent effector chemistries which were conjugated to antibodies targeting C4.4a (LYPD3), HER2 (c-erbB2), or B7H3 (CD276) and tested on antigen-positive and -negative cancer cell lines. Pharmacokinetic studies, including metabolite profiling, were performed to optimize the stability and selectivity of the ADCs and to evaluate potential bystander effects. Optimized NAMPTi-ADCs demonstrated potent in vivo antitumor efficacy in target antigen-expressing xenograft mouse models. This led to the development of highly potent NAMPT inhibitor ADCs with a very good selectivity profile compared with the corresponding isotype control ADCs. Moreover, we demonstrate─to our knowledge for the first time─the generation of NAMPTi payload metabolites from the NAMPTi-ADCs in vitro and in vivo. In conclusion, NAMPTi-ADCs represent an attractive new payload class designed for use in ADCs for the treatment of solid and hematological cancers.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Neoplasms , Nicotinamide Phosphoribosyltransferase , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , B7 Antigens , Cell Line, Tumor , Humans , Immunoconjugates/chemistry , Immunoconjugates/pharmacology , Mice , Neoplasms/drug therapy , Neoplasms/enzymology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
2.
iScience ; 23(9): 101517, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32927263

ABSTRACT

Structural mutants of p53 induce global p53 protein destabilization and misfolding, followed by p53 protein aggregation. First evidence indicates that p53 can be part of protein condensates and that p53 aggregation potentially transitions through a condensate-like state. We show condensate-like states of fluorescently labeled structural mutant p53 in the nucleus of living cancer cells. We furthermore identified small molecule compounds that interact with the p53 protein and lead to dissolution of p53 structural mutant condensates. The same compounds lead to condensation of a fluorescently tagged p53 DNA-binding mutant, indicating that the identified compounds differentially alter p53 condensation behavior depending on the type of p53 mutation. In contrast to p53 aggregation inhibitors, these compounds are active on p53 condensates and do not lead to mutant p53 reactivation. Taken together our study provides evidence for structural mutant p53 condensation in living cells and tools to modulate this process.

3.
Drug Metab Dispos ; 48(7): 553-562, 2020 07.
Article in English | MEDLINE | ID: mdl-32357973

ABSTRACT

The unbound partition coefficient (Kpuu) allows the estimation of intracellular target exposure from free extracellular drug concentrations. Although the active mechanisms controlling Kpuu are saturable, Kpuu is commonly determined at a single concentration, which may not be appropriate in cases in which drug concentrations can largely vary, e.g., in plasma in vivo or in vitro IC50 assays. We examined the concentration dependence of Kpuu in vitro using KAT6A inhibitors with varying potency drop-off in ZR75-1 breast cancer cells to account for exposure-related discrepancies between cellular and biochemical IC50 Considering saturability resulted in a better quantitative bridge between both IC50 values and gave way to a simplified method to determine Kpuu that is suitable for the prediction of unbound cytosolic drug concentrations without the need to generate fu,cell estimates from binding studies in cell homogenates. As opposed to the binding method, which destroys cellular integrity, this approach provides an alternative fu,cell estimate and directly reflects the fraction of unbound drug in the cell cytosol based on Kp saturation (fu,cyto) of intact cells. In contrast to the binding method, prediction of intracellular KAT6A exposure with this more physiologic approach was able to bridge the average exposure gap between biochemical and cellular IC50 values from 73-fold down to only 5.4-fold. The concept of concentration-dependent Kpuu provides a solid rationale for early drug discovery to discriminate between pharmacology and target exposure-related IC50 discrepancies. The attractiveness of the approach also lies in the use of the same assay format for cellular IC50, fu,cyto, and the unbound partition coefficient based on fu,cyto (Kpuu,cyto) determination. SIGNIFICANCE STATEMENT: Examination of the yet-unexplored concentration dependence of the unbound partition coefficient led to a new experimental approach that resulted in more reliable predictions of intracellular target exposure and is well suited for routine drug discovery projects.


Subject(s)
Enzyme Inhibitors/pharmacokinetics , Histone Acetyltransferases/antagonists & inhibitors , Models, Biological , Cell Line, Tumor , Cytosol/metabolism , Histone Acetyltransferases/metabolism , Humans , Inhibitory Concentration 50
4.
J Med Chem ; 59(10): 4578-600, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27075367

ABSTRACT

Protein lysine methyltransferases have recently emerged as a new target class for the development of inhibitors that modulate gene transcription or signaling pathways. SET and MYND domain containing protein 2 (SMYD2) is a catalytic SET domain containing methyltransferase reported to monomethylate lysine residues on histone and nonhistone proteins. Although several studies have uncovered an important role of SMYD2 in promoting cancer by protein methylation, the biology of SMYD2 is far from being fully understood. Utilization of highly potent and selective chemical probes for target validation has emerged as a concept which circumvents possible limitations of knockdown experiments and, in particular, could result in an improved exploration of drug targets with a complex underlying biology. Here, we report the development of a potent, selective, and cell-active, substrate-competitive inhibitor of SMYD2, which is the first reported inhibitor suitable for in vivo target validation studies in rodents.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Pyridazines/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Humans , Models, Molecular , Molecular Structure , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism
5.
Proc Natl Acad Sci U S A ; 106(36): 15344-9, 2009 Sep 08.
Article in English | MEDLINE | ID: mdl-19706427

ABSTRACT

Endosomes and endosomal vesicles (EVs) rapidly move along cytoskeletal filaments allowing them to exchange proteins and lipids between different endosomal compartments, lysosomes, the trans-Golgi network (TGN), and the plasma membrane. The precise mechanisms that connect membrane traffic between the TGN and perinuclear endosomal compartments with motor-protein driven transport have largely remained elusive. Here we show that Gadkin (also termed gamma-BAR), a peripheral membrane protein localized to the TGN and to TGN-derived EVs, directly associates with the clathrin adaptor AP-1 and with the motor protein kinesin KIF5, thereby potentially regulating EV dynamics. Gadkin overexpression induced the dispersion of transferrin (Tf)- and Rab4-positive EVs to the cell periphery, whereas KIF5B-depleted cells displayed a perinuclear concentration. Functional experiments suggest that the role of Gadkin as a regulator of endosomal membrane traffic critically depends on complex formation with both AP-1 and KIF5. Our data thus provide a direct molecular link between TGN-derived EVs and the microtubule-based cytoskeleton.


Subject(s)
Endosomes/metabolism , Kinesins/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Transcription Factor AP-1/metabolism , Animals , Biological Transport, Active/physiology , COS Cells , Chlorocebus aethiops , Chromatography, Affinity , HeLa Cells , Humans , Immunoprecipitation , Microscopy, Fluorescence
6.
J Mol Biol ; 385(5): 1630-42, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19084538

ABSTRACT

The protein disulfide isomerase-related protein ERp29 is a putative chaperone involved in processing and secretion of secretory proteins. Until now, however, both the structure and the exact nature of interacting substrates remained unclear. We provide for the first time a crystal structure of human ERp29, refined to 2.9 A, and show that the protein has considerable structural homology to its Drosophila homolog Wind. We show that ERp29 binds directly not only to thyroglobulin and thyroglobulin-derived peptides in vitro but also to the Wind client protein Pipe and Pipe-derived peptides, although it fails to process Pipe in vivo. A monomeric mutant of ERp29 and a D domain mutant in which the second peptide binding site is inactivated also bind protein substrates, indicating that the monomeric thioredoxin domain is sufficient for client protein binding. Indeed, the b domains of ERp29 or Wind, expressed alone, are sufficient for binding proteins and peptides. Interacting peptides have in common two or more aromatic residues, with stronger binding for sequences with overall basic character. Thus, the data allow a view of the two putative peptide binding sites of ERp29 and indicate that the apparent, different processing activity of the human and Drosophila proteins in vivo does not stem from differences in peptide binding properties.


Subject(s)
Heat-Shock Proteins/chemistry , Models, Molecular , Amino Acid Sequence , Animals , Binding Sites , Crystallography, X-Ray , Dimerization , Drosophila Proteins/chemistry , Heat-Shock Proteins/genetics , Humans , Molecular Sequence Data , Mutation , Peptides/chemistry , Protein Binding , Protein Structure, Tertiary , Substrate Specificity , Thioredoxins/chemistry , Thyroglobulin/chemistry
7.
J Biol Chem ; 282(15): 11213-20, 2007 Apr 13.
Article in English | MEDLINE | ID: mdl-17296603

ABSTRACT

The structure and mode of binding of the endoplasmic reticulum protein disulfide isomerase-related proteins to their substrates is currently a focus of intensive research. We have recently determined the crystal structure of the Drosophila melanogaster protein disulfide isomerase-related protein Wind and have described two essential substrate binding sites within the protein, one within the thioredoxin b-domain and another within the C-terminal D-domain. Although a mammalian ortholog of Wind (ERp29/28) is known, conflicting interpretations of its structure and putative function have been postulated. Here, we have provided evidence indicating that ERp29 is indeed similar in both structure and function to its Drosophila ortholog. Using a site-directed mutagenesis approach, we have demonstrated that homodimerization of the b-domains is significantly reduced in vitro upon replacement of key residues at the predicted dimerization interface. Investigation of Wind-ERp29 fusion constructs showed that mutants of the D-domain of ERp29 prevent transport of a substrate protein (Pipe) in a manner consistent with the presence of a discrete, conserved peptide binding site in the D-domain. Finally, we have highlighted the general applicability of these findings by showing that the D-domain of a redox-active disulfide isomerase, from the slime mold Dictyostelium discoideum, can also functionally replace the Wind D-domain in vivo.


Subject(s)
Heat-Shock Proteins/metabolism , Protein Disulfide-Isomerases/chemistry , Protein Disulfide-Isomerases/metabolism , Amino Acid Sequence , Animals , Binding Sites , COS Cells , Chlorocebus aethiops , Conserved Sequence , Dimerization , Enzyme Activation , Heat-Shock Proteins/genetics , Humans , Molecular Sequence Data , Mutation/genetics , Oxidation-Reduction , Peptides/genetics , Peptides/metabolism , Protein Disulfide-Isomerases/genetics , Rats , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...