Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(3): e4903, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38358137

ABSTRACT

The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.


Subject(s)
Escherichia coli , Nitrogen Oxides , Proteins , Humans , Electron Spin Resonance Spectroscopy/methods , Escherichia coli/genetics , Escherichia coli/chemistry , HeLa Cells , Spin Labels , Proteins/chemistry
2.
Nat Commun ; 15(1): 883, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287055

ABSTRACT

Realizing genetic circuits on single DNA molecules as self-encoded dissipative nanodevices is a major step toward miniaturization of autonomous biological systems. A circuit operating on a single DNA implies that genetically encoded proteins localize during coupled transcription-translation to DNA, but a single-molecule measurement demonstrating this has remained a challenge. Here, we use a genetically encoded fluorescent reporter system with improved temporal resolution and observe the synthesis of individual proteins tethered to a DNA molecule by transient complexes of RNA polymerase, messenger RNA, and ribosome. Against expectations in dilute cell-free conditions where equilibrium considerations favor dispersion, these nascent proteins linger long enough to regulate cascaded reactions on the same DNA. We rationally design a pulsatile genetic circuit by encoding an activator and repressor in feedback on the same DNA molecule. Driven by the local synthesis of only several proteins per hour and gene, the circuit dynamics exhibit enhanced variability between individual DNA molecules, and fluctuations with a broad power spectrum. Our results demonstrate that co-expressional localization, as a nonequilibrium process, facilitates single-DNA genetic circuits as dissipative nanodevices, with implications for nanobiotechnology applications and artificial cell design.


Subject(s)
Artificial Cells , DNA , DNA/genetics , Gene Regulatory Networks , Nanotechnology , RNA, Messenger/metabolism
3.
J Phys Chem Lett ; 14(29): 6513-6521, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37440608

ABSTRACT

The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.


Subject(s)
Adenosine Triphosphate , Fluorescence Resonance Energy Transfer , Adenosine Triphosphate/metabolism , Protein Conformation , Escherichia coli/metabolism , Protein Folding , Chaperonin 60/metabolism , Protein Binding
4.
Proc Natl Acad Sci U S A ; 117(1): 395-404, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31862713

ABSTRACT

Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.


Subject(s)
Fungal Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Protein Domains/genetics , Yeasts/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Electron Spin Resonance Spectroscopy , Fungal Proteins/chemistry , Fungal Proteins/genetics , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/genetics , Manganese/chemistry , Models, Molecular , Mutation , Spin Labels , Yeasts/genetics
5.
Chemphyschem ; 20(14): 1860-1868, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31054266

ABSTRACT

It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.


Subject(s)
Calmodulin/chemistry , Calmodulin/metabolism , Calmodulin/genetics , Cell Extracts/chemistry , Electron Spin Resonance Spectroscopy/methods , Gadolinium/chemistry , HeLa Cells , Humans , Mutation , Protein Conformation , Spin Labels
6.
Nat Commun ; 10(1): 1438, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926805

ABSTRACT

Large protein machines are tightly regulated through allosteric communication channels. Here we demonstrate the involvement of ultrafast conformational dynamics in allosteric regulation of ClpB, a hexameric AAA+ machine that rescues aggregated proteins. Each subunit of ClpB contains a unique coiled-coil structure, the middle domain (M domain), proposed as a control element that binds the co-chaperone DnaK. Using single-molecule FRET spectroscopy, we probe the M domain during the chaperone cycle and find it to jump on the microsecond time scale between two states, whose structures are determined. The M-domain jumps are much faster than the overall activity of ClpB, making it an effectively continuous, tunable switch. Indeed, a series of allosteric interactions are found to modulate the dynamics, including binding of nucleotides, DnaK and protein substrates. This mode of dynamic control enables fast cellular adaptation and may be a general mechanism for the regulation of cellular machineries.


Subject(s)
Endopeptidase Clp/metabolism , Protein Aggregates , Thermus thermophilus/enzymology , Allosteric Regulation , Binding Sites , Endopeptidase Clp/chemistry , Fluorescence Resonance Energy Transfer , HSP70 Heat-Shock Proteins/metabolism , Models, Molecular , Protein Domains , Substrate Specificity , Time Factors
7.
Sci Total Environ ; 669: 303-313, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30878937

ABSTRACT

Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.


Subject(s)
Air Pollutants/adverse effects , Mitochondria/drug effects , NF-E2-Related Factor 2/genetics , Oxidative Stress , Particulate Matter/adverse effects , A549 Cells , Air Pollution/adverse effects , Humans , Lung/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , Particle Size , Respiratory Mucosa/drug effects
8.
Proc Natl Acad Sci U S A ; 115(48): E11274-E11283, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30429330

ABSTRACT

Efficient degradation of plant cell walls by selected anaerobic bacteria is performed by large extracellular multienzyme complexes termed cellulosomes. The spatial arrangement within the cellulosome is organized by a protein called scaffoldin, which recruits the cellulolytic subunits through interactions between cohesin modules on the scaffoldin and dockerin modules on the enzymes. Although many structural studies of the individual components of cellulosomal scaffoldins have been performed, the role of interactions between individual cohesin modules and the flexible linker regions between them are still not entirely understood. Here, we report single-molecule measurements using FRET to study the conformational dynamics of a bimodular cohesin segment of the scaffoldin protein CipA of Clostridium thermocellum We observe compacted structures in solution that persist on the timescale of milliseconds. The compacted conformation is found to be in dynamic equilibrium with an extended state that shows distance fluctuations on the microsecond timescale. Shortening of the intercohesin linker does not destabilize the interactions but reduces the rate of contact formation. Upon addition of dockerin-containing enzymes, an extension of the flexible state is observed, but the cohesin-cohesin interactions persist. Using all-atom molecular-dynamics simulations of the system, we further identify possible intercohesin binding modes. Beyond the view of scaffoldin as "beads on a string," we propose that cohesin-cohesin interactions are an important factor for the precise spatial arrangement of the enzymatic subunits in the cellulosome that leads to the high catalytic synergy in these assemblies and should be considered when designing cellulosomes for industrial applications.


Subject(s)
Cell Cycle Proteins/metabolism , Cellulosomes/chemistry , Cellulosomes/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Clostridium thermocellum/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cellulosomes/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Clostridium thermocellum/chemistry , Clostridium thermocellum/genetics , Fluorescence Resonance Energy Transfer , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Binding , Cohesins
9.
J Phys Chem B ; 122(49): 11030-11038, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30088929

ABSTRACT

Folding of proteins to their functional conformation is paramount to life. Though 75% of the proteome consists of multidomain proteins, our knowledge of folding has been based primarily on studies conducted on single-domain and fast-folding proteins. Nonetheless, the complexity of folding landscapes exhibited by multidomain proteins has received increased scrutiny in recent years. We study the three-domain protein adenylate kinase from E. coli (AK), which has been shown to fold through a series of pathways involving several intermediate states. We use a protein design method to manipulate the folding landscape of AK, and single-molecule FRET spectroscopy to study the effects on the folding process. Mutations introduced in the NMP binding (NMPbind) domain of the protein are found to have unexpected effects on the folding landscape. Thus, while stabilizing mutations in the core of the NMPbind domain retain the main folding pathways of wild-type AK, a destabilizing mutation at the interface between the NMPbind and the CORE domains causes a significant repartition of the flux between the folding pathways. Our results demonstrate the outstanding plasticity of the folding landscape of AK and reveal how specific mutations in the primary structure are translated into changes in folding dynamics. The combination of methodologies introduced in this work should prove useful for deepening our understanding of the folding process of multidomain proteins.


Subject(s)
Adenylate Kinase/chemistry , Escherichia coli/enzymology , Protein Folding , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Fluorescence Resonance Energy Transfer , Mutation , Protein Engineering
10.
J Chem Phys ; 148(12): 123303, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604826

ABSTRACT

Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, ∼7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal ß strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.


Subject(s)
Models, Biological , Proteins/chemistry , Fluorescence Resonance Energy Transfer , Molecular Dynamics Simulation , Protein Folding
11.
Proc Natl Acad Sci U S A ; 115(13): 3243-3248, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29531052

ABSTRACT

The functional cycle of many proteins involves large-scale motions of domains and subunits. The relation between conformational dynamics and the chemical steps of enzymes remains under debate. Here we show that in the presence of substrates, domain motions of an enzyme can take place on the microsecond time scale, yet exert influence on the much-slower chemical step. We study the domain closure reaction of the enzyme adenylate kinase from Escherichia coli while in action (i.e., under turnover conditions), using single-molecule FRET spectroscopy. We find that substrate binding increases dramatically domain closing and opening times, making them as short as ∼15 and ∼45 µs, respectively. These large-scale conformational dynamics are likely the fastest measured to date, and are ∼100-200 times faster than the enzymatic turnover rate. Some active-site mutants are shown to fully or partially prevent the substrate-induced increase in domain closure times, while at the same time they also reduce enzymatic activity, establishing a clear connection between the two phenomena, despite their disparate time scales. Based on these surprising observations, we propose a paradigm for the mode of action of enzymes, in which numerous cycles of conformational rearrangement are required to find a mutual orientation of substrates that is optimal for the chemical reaction.


Subject(s)
Adenylate Kinase/chemistry , Adenylate Kinase/metabolism , Fluorescence Resonance Energy Transfer/methods , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Adenylate Kinase/genetics , Binding Sites , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Point Mutation , Protein Conformation , Protein Domains
12.
Biotechnol Biofuels ; 10: 222, 2017.
Article in English | MEDLINE | ID: mdl-28932263

ABSTRACT

BACKGROUND: Bioethanol production processes involve enzymatic hydrolysis of pretreated lignocellulosic biomass into fermentable sugars. Due to the relatively high cost of enzyme production, the development of potent and cost-effective cellulolytic cocktails is critical for increasing the cost-effectiveness of bioethanol production. In this context, the multi-protein cellulolytic complex of Clostridium (Ruminiclostridium) thermocellum, the cellulosome, was studied here. C. thermocellum is known to assemble cellulosomes of various subunit (enzyme) compositions, in response to the available carbon source. In the current study, different carbon sources were used, and their influence on both cellulosomal composition and the resultant activity was investigated. RESULTS: Glucose, cellobiose, microcrystalline cellulose, alkaline-pretreated switchgrass, alkaline-pretreated corn stover, and dilute acid-pretreated corn stover were used as sole carbon sources in the growth media of C. thermocellum strain DSM 1313. The purified cellulosomes were compared for their activity on selected cellulosic substrates. Interestingly, cellulosomes derived from cells grown on lignocellulosic biomass showed no advantage in hydrolyzing the original carbon source used for their production. Instead, microcrystalline cellulose- and glucose-derived cellulosomes were equal or superior in their capacity to deconstruct lignocellulosic biomass. Mass spectrometry analysis revealed differential composition of catalytic and structural subunits (scaffoldins) in the different cellulosome samples. The most abundant catalytic subunits in all cellulosome types include Cel48S, Cel9K, Cel9Q, Cel9R, and Cel5G. Microcrystalline cellulose- and glucose-derived cellulosome samples showed higher endoglucanase-to-exoglucanase ratios and higher catalytic subunit-per-scaffoldin ratios compared to lignocellulose-derived cellulosome types. CONCLUSION: The results reported here highlight the finding that cellulosomes derived from cells grown on glucose and microcrystalline cellulose are more efficient in their action on cellulosic substrates than other cellulosome preparations. These results should be considered in the future development of C. thermocellum-based cellulolytic cocktails, designer cellulosomes, or engineering of improved strains for deconstruction of lignocellulosic biomass.

13.
Nanomaterials (Basel) ; 7(7)2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28644390

ABSTRACT

The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin. Each of the two compartments was designed, displayed, and tested separately. The new hybrid cell compartments displayed enhanced performance over traditional biofuel cells; in the anode, the cascade of ethanol oxidation demonstrated higher performance than a cell with just a single enzyme. In the cathode, a higher copy number per yeast cell of the oxygen-reducing enzyme copper oxidase has reduced the effect of competitive inhibition resulting from yeast oxygen consumption. This work paves the way for the assembly of more complex cascades using different enzymes and larger scaffoldins to further improve the performance of hybrid cells.

14.
PLoS One ; 12(4): e0175273, 2017.
Article in English | MEDLINE | ID: mdl-28403156

ABSTRACT

VirE2 is a ssDNA binding protein essential for virulence in Agrobacterium tumefaciens. A tetracysteine mutant (VirE2-TC) was prepared for in vitro and in vivo fluorescence imaging based on the ReAsH reagent. VirE2-TC was found to be biochemically active as it binds both ssDNA and the acidic secretion chaperone VirE1. It was also biologically functional in complementing virE2 null strains transforming Arabidopsis thaliana roots and Nicotiana tabacum leaves. In vitro experiments demonstrated a two-color fluorescent complex using VirE2-TC/ReAsH and Alexa Fluor 488 labeled ssDNA. In vivo, fluorescent VirE2-TC/ReAsH was detected in bacteria and in plant cells at time frames relevant to transformation.


Subject(s)
Agrobacterium tumefaciens/metabolism , Arabidopsis/microbiology , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Nicotiana/microbiology , Plant Tumors/microbiology , Virulence Factors/metabolism , Agrobacterium tumefaciens/cytology , Agrobacterium tumefaciens/genetics , Bacterial Proteins/genetics , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , Mutation , Optical Imaging , Protein Binding , Virulence Factors/genetics
15.
Sci Rep ; 7: 42355, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28186207

ABSTRACT

Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.


Subject(s)
Bacterial Proteins/metabolism , Cellulosomes/metabolism , Protein Interaction Maps , Ruminococcus/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Cell Cycle Proteins/metabolism , Cellulose/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Models, Biological , Phylogeny , Protein Array Analysis , Cohesins
16.
mBio ; 6(3): e00411-15, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25991683

ABSTRACT

UNLABELLED: Clostridium clariflavum is an anaerobic, cellulosome-forming thermophile, containing in its genome genes for a large number of cellulosomal enzyme and a complex scaffoldin system. Previously, we described the major cohesin-dockerin interactions of the cellulosome components, and on this basis a model of diverse cellulosome assemblies was derived. In this work, we cultivated C. clariflavum on cellobiose-, microcrystalline cellulose-, and switchgrass-containing media and isolated cell-free cellulosome complexes from each culture. Gel filtration separation of the cellulosome samples revealed two major fractions, which were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to identify the key players of the cellulosome assemblies therein. From the 13 scaffoldins present in the C. clariflavum genome, 11 were identified, and a variety of enzymes from different glycoside hydrolase and carbohydrate esterase families were identified, including the glycoside hydrolase families GH48, GH9, GH5, GH30, GH11, and GH10. The expression level of the cellulosomal proteins varied as a function of the carbon source used for cultivation of the bacterium. In addition, the catalytic activity of each cellulosome was examined on different cellulosic substrates, xylan and switchgrass. The cellulosome isolated from the microcrystalline cellulose-containing medium was the most active of all the cellulosomes that were tested. The results suggest that the expression of the cellulosome proteins is regulated by the type of substrate in the growth medium. Moreover, both cell-free and cell-bound cellulosome complexes were produced which together may degrade the substrate in a synergistic manner. These observations are compatible with our previously published model of cellulosome assemblies in this bacterium. IMPORTANCE: Because the reservoir of unsustainable fossil fuels, such as coal, petroleum, and natural gas, is overutilized and continues to contribute to environmental pollution and CO2 emission, the need for appropriate alternative energy sources becomes more crucial. Bioethanol produced from dedicated crops and cellulosic waste can provide a partial answer, yet a cost-effective production method must be developed. The cellulosome system of the anaerobic thermophile C. clariflavum comprises a large number of cellulolytic and hemicellulolytic enzymes, which self-assemble in a number of different cellulosome architectures for enhanced cellulosic biomass degradation. Identification of the major cellulosomal components expressed during growth of the bacterium and their influence on its catalytic capabilities provide insight into the performance of the remarkable cellulosome of this intriguing bacterium. The findings, together with the thermophilic characteristics of the proteins, render C. clariflavum of great interest for future use in industrial cellulose conversion processes.


Subject(s)
Cellulosomes/genetics , Clostridium/genetics , Clostridium/metabolism , Proteomics , Biomass , Carbon/metabolism , Carboxylesterase/classification , Carboxylesterase/genetics , Carboxylesterase/isolation & purification , Cellulase/genetics , Cellulose/metabolism , Cellulosomes/chemistry , Cellulosomes/metabolism , Chromatography, Liquid , Clostridium/growth & development , Electrophoresis, Polyacrylamide Gel , Genome, Bacterial , Glycoside Hydrolases/classification , Glycoside Hydrolases/genetics , Glycoside Hydrolases/isolation & purification , Hydrolysis , Tandem Mass Spectrometry
17.
J Biol Chem ; 290(22): 13654-66, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25833947

ABSTRACT

Interactions between cohesin and dockerin modules play a crucial role in the assembly of multienzyme cellulosome complexes. Although intraspecies cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum cohesin-dockerin interface to binding affinity, specificity, and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position Asn(37) show dramatic variability in their effect on dockerin binding affinity and specificity: the N37A mutant binds promiscuously both to cognate (C. thermocellum) as well as to non-cognate Clostridium cellulolyticum dockerin. N37L in turn switches binding specificity: compared with the wild-type C. thermocellum cohesin, this mutant shows significantly increased preference for C. cellulolyticum dockerin combined with strongly reduced binding to its cognate C. thermocellum dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high affinity background.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Carbohydrates/chemistry , Cellulose/metabolism , Clostridium cellulolyticum/metabolism , Clostridium thermocellum/metabolism , Computational Biology , Enzyme-Linked Immunosorbent Assay , Inhibitory Concentration 50 , Mutation , Protein Array Analysis , Protein Binding , Protein Structure, Tertiary , Software , Species Specificity , Substrate Specificity , Thermodynamics , Cohesins
18.
J Mol Recognit ; 28(3): 148-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25639797

ABSTRACT

Cellulosomes are large multicomponent cellulose-degrading assemblies found on the surfaces of cellulolytic microorganisms. Often containing hundreds of components, the self-assembly of cellulosomes is mediated by the ultra-high-affinity cohesin-dockerin interaction, which allows them to adopt the complex architectures necessary for degrading recalcitrant cellulose. Better understanding of how the cellulosome assembles and functions and what kinds of structures it adopts will further effort to develop industrial applications of cellulosome components, including their use in bioenergy production. Ruminococcus flavefaciens is a well-studied anaerobic cellulolytic bacteria found in the intestinal tracts of ruminants and other herbivores. Key to cellulosomal self-assembly in this bacterium is the dockerin ScaADoc, found on the non-catalytic structural subunit scaffoldin ScaA, which is responsible for assembling arrays of cellulose-degrading enzymes. This work expands on previous efforts by conducting a series of binding studies on ScaADoc constructs that contain mutations in their cohesin recognition interface, in order to identify which residues play important roles in binding. Molecular dynamics simulations were employed to gain insight into the structural basis for our findings. A specific residue pair in the first helix of ScaADoc, as well as a glutamate near the C-terminus, was identified to be essential for cohesin binding. By advancing our understanding of the cohesin binding of ScaADoc, this study serves as a foundation for future work to more fully understand the structural basis of cellulosome assembly in R. flavefaciens.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Glutamic Acid/metabolism , Ruminococcus/metabolism , Bacterial Proteins/metabolism , Binding Sites , Cellulose/metabolism , Cellulosomes/chemistry , Cellulosomes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Mutation , Protein Structure, Secondary , Cohesins
19.
PeerJ ; 2: e636, 2014.
Article in English | MEDLINE | ID: mdl-25374780

ABSTRACT

Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.

20.
Biotechnol Biofuels ; 6(1): 182, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24341331

ABSTRACT

BACKGROUND: Select cellulolytic bacteria produce multi-enzymatic cellulosome complexes that bind to the plant cell wall and catalyze its efficient degradation. The multi-modular interconnecting cellulosomal subunits comprise dockerin-containing enzymes that bind cohesively to cohesin-containing scaffoldins. The organization of the modules into functional polypeptides is achieved by intermodular linkers of different lengths and composition, which provide flexibility to the complex and determine its overall architecture. RESULTS: Using a synthetic biology approach, we systematically investigated the spatial organization of the scaffoldin subunit and its effect on cellulose hydrolysis by designing a combinatorial library of recombinant trivalent designer scaffoldins, which contain a carbohydrate-binding module (CBM) and 3 divergent cohesin modules. The positions of the individual modules were shuffled into 24 different arrangements of chimaeric scaffoldins. This basic set was further extended into three sub-sets for each arrangement with intermodular linkers ranging from zero (no linkers), 5 (short linkers) and native linkers of 27-35 amino acids (long linkers). Of the 72 possible scaffoldins, 56 were successfully cloned and 45 of them expressed, representing 14 full sets of chimaeric scaffoldins. The resultant 42-component scaffoldin library was used to assemble designer cellulosomes, comprising three model C. thermocellum cellulases. Activities were examined using Avicel as a pure microcrystalline cellulose substrate and pretreated cellulose-enriched wheat straw as a model substrate derived from a native source. All scaffoldin combinations yielded active trivalent designer cellulosome assemblies on both substrates that exceeded the levels of the free enzyme systems. A preferred modular arrangement for the trivalent designer scaffoldin was not observed for the three enzymes used in this study, indicating that they could be integrated at any position in the designer cellulosome without significant effect on cellulose-degrading activity. Designer cellulosomes assembled with the long-linker scaffoldins achieved higher levels of activity, compared to those assembled with short-and no-linker scaffoldins. CONCLUSIONS: The results demonstrate the robustness of the cellulosome system. Long intermodular scaffoldin linkers are preferable, thus leading to enhanced degradation of cellulosic substrates, presumably due to the increased flexibility and spatial positioning of the attached enzymes in the complex. These findings provide a general basis for improved designer cellulosome systems as a platform for bioethanol production.

SELECTION OF CITATIONS
SEARCH DETAIL
...