Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1910, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253778

ABSTRACT

This study aimed to investigate the effects of eugenol treatment on reproductive parameters in acrylamide (ACR)-intoxicated rats. The study evaluated alterations in relative testes and epididymides weights, sperm quality, serum hormonal status, seminal plasma amino acids, testicular cell energy and phospholipids content, oxidative and nitrosative stress parameters, adenosine monophosphate-activated protein kinase/ phosphoinositide 3-kinase/phosphor-protein kinase B/mammalian target of rapamycin (AMPK/PI3K/p-AKT/mTOR) signaling pathway, blood-testis barrier (BTB) remodeling markers, testicular autophagy and apoptotic markers, as well as histopathological alterations in testicular tissues. The results revealed that eugenol treatment demonstrated a significant improvement in sperm quality parameters, with increased sperm cell concentration, progressive motility live sperm, and a reduction in abnormal sperm, compared to the ACR-intoxicated group. Furthermore, eugenol administration increased the levels of seminal plasma amino acids in a dose-dependent manner. In addition, eugenol treatment dose-dependently improved testicular oxidative/nitrosative stress biomarkers by increasing oxidized and reduced glutathione levels and reducing malondialdehyde and nitric oxide contents as compared to ACRgroup. However, eugenol treatment at a high dose restored the expression of AMPK, PI3K, and mTOR genes, to levels comparable to the control group, while significantly increasing p-AKT content compared to the ACRgroup. In conclusion, the obtained findings suggest the potential of eugenol as a therapeutic agent in mitigating ACR-induced detrimental effects on the male reproductive system via amelioration of ROS-mediated autophagy, apoptosis, AMPK/p-AKT/mTOR signaling pathways and BTB remodeling.


Subject(s)
Antifibrinolytic Agents , Testis , Male , Animals , Rats , AMP-Activated Protein Kinases , Eugenol/pharmacology , Proto-Oncogene Proteins c-akt , Blood-Testis Barrier , Phosphatidylinositol 3-Kinases , Semen , Signal Transduction , TOR Serine-Threonine Kinases , Acrylamide/toxicity , Amino Acids , Mammals
2.
Bioorg Chem ; 105: 104444, 2020 12.
Article in English | MEDLINE | ID: mdl-33197852

ABSTRACT

Phytochemical investigation of the butanol fraction (BUF) derived from the 70% aqueous methanolic leaf extract of Barnebydendron riedelii led to the isolation of three flavonoid glycosides; kaempferol-3-O-α-l-rhamnopyranosyl-(1 â†’ 6)-ß-d-glucopyranoside, quercetin-3-O-α-l-rhamnopyranosyl-(1 â†’ 6)-ß-d-galactopyranoside and quercetin-3-O-α-l-rhamnopyranosyl-(1 â†’ 6)-ß-d-glucopyranoside. Docking studies were fulfilled to validate the possible bio-properties of BUF toward nuclear factorkappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2). The protective role of BUF against behavioral, biochemical, molecular, histopathological and immunohistochemical alterations in thioacetamide (TAA)-induced hepatic encephalopathy in rats was investigated. The toxicological studies indicated that BUF was safe up to 2000 mg/kg bw. Prior to TAA intoxication, rats were orally treated with either BUF at multiple doses (70, 140 and 280 mg/kg bw) or lactulose (8 mL/kg bw) for 14 consecutive days. On the 13th and the 14th day, TAA (200 mg/kg bw/day) was intraperitoneally injected. The BUF significantly improved motor impairment, ameliorated cognitive deficits and attenuated TAA-induced hepatotoxicity. Moreover, BUF controlled the inflammatory processes by suppressing the hepatic inflammatory cytokine; interleukin-6 (IL-6) as well as its pro-inflammatory mediator; NF-κB supporting the molecular docking assessment. The brain neurotransmitters; dopamine, serotonin and noradrenaline, as well as ammonia levels were improved in BUF-treated TAA-intoxicated animals in a dose-dependent manner. Furthermore, BUF administration to TAA-intoxicated rats modulated the Nrf2 and heme oxygenase 1 (HO-1) genes expression in liver and brain tissues. The histological evaluation showed that pretreatment of TAA-intoxicated rats with BUF ameliorated the degenerative effects of TAA on liver and brain tissues as well as reduced the activation of cellular apoptotic marker; caspase-3 and glial fibrillary acidic protein (GFAP+) astrocytes. In conclusion, the observed hepato-neuroprotective effect of BUF is attributed to its flavonoidal content through its modulatory effects on of NF-κB/IL-6 and Nrf2/HO-1 signaling pathways.


Subject(s)
Flavonoids/isolation & purification , Hepatic Encephalopathy/prevention & control , Magnoliopsida/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Thioacetamide/metabolism , Animals , Behavior Rating Scale , Body Weight/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Dose-Response Relationship, Drug , Drug Discovery , Flavonoids/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Heme Oxygenase-1/metabolism , Hepatic Encephalopathy/ethnology , Humans , Interleukin-6/metabolism , Liver/metabolism , Male , Molecular Docking Simulation , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neurotransmitter Agents/isolation & purification , Neurotransmitter Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Rats , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...