Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(25): 31640-7, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26698957

ABSTRACT

A one-dimensional photonic crystal sustaining Bloch Surface Waves (BSWs) is used as a platform for two-dimensional integrated optics. The dielectric platform shows low loss, long propagation distance and high surface field enhancement. In order to study the potential of the platform for future photonic chips, polymer ultra-thin prisms and gratings (~100 nm) are engineered on the top of the platform. This polymer layer modifies the BSWs effective index enabling a direct manipulation of light. The BSW deflection effects caused by surface prisms are observed in the near-field and Snells law is verified; then the BSW diffractions through surface gratings are experimentally and theoretically characterized. The results show a robust platform that can be used for integrated optics that includes different optical components. One of the main advantages is that these 2D photonic devices can have arbitrary shapes, which is difficult to obtain in 3D.

2.
Opt Express ; 22(17): 20871-80, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25321289

ABSTRACT

We propose and study an integrated refractive index sensor which is based on a plasmonic slot waveguide cavity. In this device, a guided mode supported by a silicon photonic wire waveguide is vertically coupled to a metal-dielectric-metal cavity separated by a silicon oxide spacer. We perform an in-depth study that links the geometrical parameters of the sensor to the coupling mechanism and sensitivity of the plasmonic slot waveguide cavity. Simulation results promise that local changes of refractive index can be measured with a high sensitivity of around 600 nm/RIU in a femto-liter volume. These results are obtained with three-dimensional time and frequency domain simulations. Thanks to the high field enhancement in the slot of the plasmonic cavity, a high local sensitivity to changes of refractive index is obtained. Moreover, the high level of achieved decoupling between the bulk and the local sensitivity complies well with the requirements of biomolecular sensing.


Subject(s)
Biosensing Techniques/instrumentation , Computer Simulation , Metals/chemistry , Photons , Refractometry/instrumentation , Silicon , Surface Plasmon Resonance/instrumentation , Equipment Design
3.
Sci Rep ; 4: 5428, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24962615

ABSTRACT

The control of emission from localized light sources is an objective of outstanding relevance in nanophotonics. In a recent past, a large number of metallic nanostructures has been proposed to this end, wherein plasmonic modes are exploited as energy carriers on a subwavelength scale. As an interesting alternative, we present here the use of surface modes on patterned dielectric multilayers to deliver electromagnetic power from free-space to localized volumes and vice versa. Thanks to this low-loss energy transfer, proper periodic ring structures are shown to provide a subwavelength focusing of an external radiation onto the multilayer surface. By reciprocity, the radiated power from emitters within the ring center is shown to be efficiently beamed in the free-space, with a well-controlled angular divergence. This mechanism overcomes some important limitations involved in the all-plasmonic approach, while opening new opportunities for hybrid devices in photon management applications such as optical sensing and lighting.

4.
Opt Lett ; 38(17): 3374-6, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23988961

ABSTRACT

We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...