Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Intell Neurosci ; 2022: 2250275, 2022.
Article in English | MEDLINE | ID: mdl-36199959

ABSTRACT

Skin cancer is the uncontrolled growth of irregular cancer cells in the human-skin's outer layer. Skin cells commonly grow in an uneven pattern on exposed skin surfaces. The majority of melanomas, aside from this variety, form in areas that are rarely exposed to sunlight. Harmful sunlight, which results in a mutation in the DNA and irreparable DNA damage, is the primary cause of skin cancer. This demonstrates a close connection between skin cancer and molecular biology and genetics. Males and females both experience the same incidence rate. Avoiding revelation to ultraviolet (UV) emissions can lower the risk rate. This needed to be known about in order to be prevented from happening. To identify skin cancer, an improved image analysis technique was put forth in this work. The skin alterations are routinely monitored by this proposed skin cancer categorization approach. Therefore, early detection of suspicious skin changes can aid in the early discovery of skin cancer, increasing the likelihood of a favourable outcome. Due to the blessing of diagnostic technology and recent advancements in cancer treatment, the survival rate of patients with skin cancer has grown. The strategy for detecting skin cancer using image processing technologies is presented in this paper. The system receives the image of the skin lesion as an input and analyses it using cutting-edge image processing methods to determine whether skin cancer is present. The Lesion Image Analysis Tools use texture, size, and shape assessment for image segmentation and feature phases to check for various cancer criteria including asymmetries, borders, pigment, and diameter. The image is classified as Normal skin and a lesion caused by skin cancer using the derived feature parameters.


Subject(s)
Dermoscopy , Skin Neoplasms , Algorithms , Data Mining , Delivery of Health Care , Dermoscopy/methods , Female , Humans , Male , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology
2.
Biomed Res Int ; 2022: 2263194, 2022.
Article in English | MEDLINE | ID: mdl-35265709

ABSTRACT

In this paper, we develop a healthcare biclustering model in the field of healthcare to reduce the inconveniences linked to the data clustering on gene expression. The present study uses two separate healthcare biclustering approaches to identify specific gene activity in certain environments and remove the duplication of broad gene information components. Moreover, because of its adequacy in the problem where populations of potential solutions allow exploration of a greater portion of the research area, machine learning or heuristic algorithm has become extensively used for healthcare biclustering in the field of healthcare. The study is evaluated in terms of average match score for nonoverlapping modules, overlapping modules through the influence of noise for constant bicluster and additive bicluster, and the run time. The results show that proposed FCM blustering method has higher average match score, and reduced run time proposed FCM than the existing PSO-SA and fuzzy logic healthcare biclustering methods.


Subject(s)
Algorithms , Gene Expression Profiling , Cluster Analysis , Delivery of Health Care , Gene Expression , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods
3.
J Healthc Eng ; 2022: 5691203, 2022.
Article in English | MEDLINE | ID: mdl-35047153

ABSTRACT

In 6G edge communication networks, the machine learning models play a major role in enabling intelligent decision-making in case of optimal resource allocation in case of the healthcare system. However, it causes a bottleneck, in the form of sophisticated memory calculations, between the hidden layers and the cost of communication between the edge devices/edge nodes and the cloud centres, while transmitting the data from the healthcare management system to the cloud centre via edge nodes. In order to reduce these hurdles, it is important to share workloads to further eliminate the problems related to complicated memory calculations and transmission costs. The effort aims mainly to reduce storage costs and cloud computing associated with neural networks as the complexity of the computations increases with increasing numbers of hidden layers. This study modifies federated teaching to function with distributed assignment resource settings as a distributed deep learning model. It improves the capacity to learn from the data and assigns an ideal workload depending on the limited available resources, slow network connection, and more edge devices. Current network status can be sent to the cloud centre by the edge devices and edge nodes autonomously using cybertwin, meaning that local data are often updated to calculate global data. The simulation shows how effective resource management and allocation is better than standard approaches. It is seen from the results that the proposed method achieves higher resource utilization and success rate than existing methods. Index Terms are fuzzy, healthcare, bioinformatics, 6G wireless communication, cybertwin, machine learning, neural network, and edge.


Subject(s)
Cloud Computing , Delivery of Health Care , Computer Simulation , Humans , Resource Allocation , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...