Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 16(2): 210-217, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37945834

ABSTRACT

Microscopic sequences of synthetic polymers play crucial roles in the polymer properties, but are generally unknown and inaccessible to traditional measurements. Here we report real-time optical sequencing of single synthetic copolymer chains under living polymerization conditions. We achieve this by carrying out multi-colour imaging of polymer growth by single catalysts at single-monomer resolution using CREATS (coupled reaction approach toward super-resolution imaging). CREATS makes a reaction effectively fluorogenic, enabling single-molecule localization microscopy of chemical reactions at higher reactant concentrations. Our data demonstrate that the chain propagation kinetics of surface-grafted polymerization contains temporal fluctuations with a defined memory time (which can be attributed to neighbouring monomer interactions) and chain-length dependence (due to surface electrostatic effects). Furthermore, the microscopic sequences of individual copolymers reveal their tendency to form block copolymers, and, more importantly, quantify the size distribution of individual blocks for comparison with theoretically random copolymers. Such sequencing capability paves the way for single-chain-level structure-function correlation studies of synthetic polymers.

2.
ACS Cent Sci ; 8(8): 1116-1124, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36032769

ABSTRACT

Synthetic polymers have widespread applications in daily life and advanced materials applications. Making polymers efficiently and controllably is highly desired, for which modulating intramolecular and intermolecular interactions have been an effective approach. Recent real-time single-polymer growth studies uncovered nonequilibrium conformational entanglements that form stochastically under living polymerization conditions and which appear to plausibly play key roles in controlling the polymerization kinetics and dispersion. Here, using magnetic tweezers measurements, we study the real-time polymerization dynamics of single polynorbornene-based polymers in which we systematically tune the hydrogen-bonding interactions by titrating the OH content in the monomers and the formed polymers during ring opening metathesis polymerization. Using norbornenes with and without a hydroxyl group and a nonreactive monomer analogue, we show that intrachain and intermolecular hydrogen bonding compete, and both alter the microscopic properties of the nonequilibrium entanglements, leading to surprising multiphasic dependences of polymerization dynamics on the polymer's OH content. We further formulate a simple model to rationalize quantitatively the observed multiphasic behaviors by considering the different scaling relations of intrachain and intermolecular hydrogen bonding on the OH content. These results provide insights into the interconnected roles of intra-/intermolecular interactions, polymer chain conformations, and free monomers in solution in affecting polymerization kinetics and dispersion, and point to new opportunities in manipulating polymerization reactions.

3.
Nanoscale ; 10(3): 941-948, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29293252

ABSTRACT

In this paper, we introduce a new optical temperature and thermal imaging technique combining near-field microscopy and Er3+ photoluminescence thermometry. The tip aperture of 120 nm limits the spatial resolution of near-field thermal imaging. We use the technique with two different approaches towards local temperature measurement and thermal imaging. In the first approach, gold nanostructures on top of Al0.94Ga0.06N thin film embedded with Er3+ ions are optically excited through the SNOM tip with 532 nm CW laser to generate thermal images that have a Gaussian thermal profile because heating and probing are done through a single tip aperture. In the second approach, nanostructures on top of thermal sensor film of AlGaN : Er3+ ions deposited on a transparent sapphire substrate are excited with 532 nm CW laser through the substrate with a large spot size (FWHM ∼10 µm) and Er3+ emission from the film is collected in transmission mode through the SNOM tip. We use this approach to measure steady-state thermal profiles from optically excited different sized clusters made from 40 nm gold nanoparticles. This approach yields steady-state thermal profiles that have inverse distance temperature decay away from the cluster and we find that the maximum temperature change and temperature decay length into the surrounding medium (r½) scales with cluster radius.

4.
Small ; 13(1)2017 Jan.
Article in English | MEDLINE | ID: mdl-27699975

ABSTRACT

An optical nanothermometer technique based on laser trapping, moving and targeted attaching an erbium oxide nanoparticle cluster is developed to measure the local temperature. The authors apply this new nanoscale temperature measuring technique (limited by the size of the nanoparticles) to measure the temperature of vapor nucleation in water. Vapor nucleation is observed after superheating water above the boiling point for degassed and nondegassed water. The average nucleation temperature for water without gas is 560 K but this temperature is lowered by 100 K when gas is introduced into the water. The authors are able to measure the temperature inside the bubble during bubble formation and find that the temperature inside the bubble spikes to over 1000 K because the heat source (optically-heated nanorods) is no longer connected to liquid water and heat dissipation is greatly reduced.

5.
ACS Nano ; 10(6): 6080-9, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27215955

ABSTRACT

The local temperature change from a single optically excited gold nanowire, lithographically prepared on Al0.94Ga0.06N embedded with Er(3+) ions, is measured in air, pure water, and various concentrations of aqueous solutions of ionic solutes of NaCl, Na2SO4, and MgSO4. The absorption cross section of the nanowire under pure water (2.25 × 10(-14) m(2)) and different solution ionic strength is measured from the slopes of temperature change versus laser intensity plots. Addition of charges into the solution decreases the amount of heat generated during optical excitation of the gold nanostructures because the absorption cross section of the gold nanowire is attenuated. A Langmuir-type behavior of the absorption cross section with ionic strength is observed that is identified with an increase in the occupancy of screened interfacial charges. The absorption cross section of the nanowire decreases with ionic strength until a saturation value of 9 × 10(-15) m(2), where saturation in the occupancy of screened interfacial charge occurs. Dynamic measurements of temperature for a single gold nanowire immersed in a microchannel flow cell show a sharp and fast temperature drop for the flow of ionic solution compared to the pure (deionized) water, suggesting that the technique can be developed as a sensor probe to detect the presence of ions in solution.

6.
ACS Nano ; 8(2): 1439-48, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24476426

ABSTRACT

The phase transformation properties of liquid water to vapor is characterized by optical excitation of the lithographically fabricated single gold nanowrenches and contrasted to the phase transformation properties of gold nanoparticles located and optically excited in a bulk solution system [two and three dimensions]. The 532 nm continuous wave excitation of a single gold nanowrench results in superheating of the water to the spinodal decomposition temperature of 580 ± 20 K with bubble formation below the spinodal decomposition temperature being a rare event. Between the spinodal decomposition temperature and the boiling point liquid water is trapped into a metastable state because a barrier to vapor nucleation exists that must be overcome before the thermodynamically stable state is realized. The phase transformation for an optically heated single gold nanowrench is different from the phase transformation of optically excited colloidal gold nanoparticles solution where collective heating effects dominates and leads to the boiling of the solution exactly at the boiling point. In the solution case, the optically excited ensemble of nanoparticles collectively raises the ambient temperature of water to the boiling point where liquid is converted into vapor. The striking difference in the boiling properties of the single gold nanowrench and the nanoparticle solution system can be explained in terms of the vapor-nucleation mechanism, the volume of the overheated liquid, and the collective heating effect. The interpretation of the observed regimes of heating and vaporization is consistent with our theoretical modeling. In particular, we explain with our theory why the boiling with the collective heating in a solution requires 3 orders of magnitude less intensity compared to the case of optically driven single nanowrench.

7.
Nano Lett ; 13(9): 4142-7, 2013 Sep 11.
Article in English | MEDLINE | ID: mdl-23924145

ABSTRACT

The thermal conductance from a hydrophobic gold aqueous interface is measured with increasing solute concentration. A small amount of aqueous solute molecules (1 solute molecule in 550 water molecules) dramatically increases the heat dissipation into the surrounding liquid. This result is consistent with a thermal conductance that is limited by an interface interaction where minority aqueous components significantly alter the surface properties and heat transport through the interface. The increase in heat dissipation can be used to make an extremely sensitive molecular detector that can be scaled to give single molecule detection without amplification or utilizing fluorescence labels.


Subject(s)
Gold/chemistry , Nanowires/chemistry , Solutions/chemistry , Water/chemistry , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...