Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PeerJ ; 4: e2331, 2016.
Article in English | MEDLINE | ID: mdl-27602295

ABSTRACT

Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories. Towards providing a practical guide for producing a high quality description of biomedical datasets, the W3C Semantic Web for Health Care and the Life Sciences Interest Group (HCLSIG) identified Resource Description Framework (RDF) vocabularies that could be used to specify common metadata elements and their value sets. The resulting guideline covers elements of description, identification, attribution, versioning, provenance, and content summarization. This guideline reuses existing vocabularies, and is intended to meet key functional requirements including indexing, discovery, exchange, query, and retrieval of datasets, thereby enabling the publication of FAIR data. The resulting metadata profile is generic and could be used by other domains with an interest in providing machine readable descriptions of versioned datasets.

2.
J Biomed Semantics ; 7: 39, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27296299

ABSTRACT

BACKGROUND: Nucleotide and protein sequence feature annotations are essential to understand biology on the genomic, transcriptomic, and proteomic level. Using Semantic Web technologies to query biological annotations, there was no standard that described this potentially complex location information as subject-predicate-object triples. DESCRIPTION: We have developed an ontology, the Feature Annotation Location Description Ontology (FALDO), to describe the positions of annotated features on linear and circular sequences. FALDO can be used to describe nucleotide features in sequence records, protein annotations, and glycan binding sites, among other features in coordinate systems of the aforementioned "omics" areas. Using the same data format to represent sequence positions that are independent of file formats allows us to integrate sequence data from multiple sources and data types. The genome browser JBrowse is used to demonstrate accessing multiple SPARQL endpoints to display genomic feature annotations, as well as protein annotations from UniProt mapped to genomic locations. CONCLUSIONS: Our ontology allows users to uniformly describe - and potentially merge - sequence annotations from multiple sources. Data sources using FALDO can prospectively be retrieved using federalised SPARQL queries against public SPARQL endpoints and/or local private triple stores.


Subject(s)
Biological Ontologies , Molecular Sequence Annotation/standards , Nucleotides/genetics , Nucleotides/metabolism , Proteins/chemistry , Proteins/metabolism , Semantics , Databases, Genetic , Databases, Protein , Fuzzy Logic , Humans , Reference Books
3.
PeerJ ; 3: e933, 2015.
Article in English | MEDLINE | ID: mdl-26019997

ABSTRACT

Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology's GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

4.
J Biomed Semantics ; 5(1): 14, 2014 03 06.
Article in English | MEDLINE | ID: mdl-24602174

ABSTRACT

The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org.

5.
J Biomed Semantics ; 5(1): 5, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24495517

ABSTRACT

The application of semantic technologies to the integration of biological data and the interoperability of bioinformatics analysis and visualization tools has been the common theme of a series of annual BioHackathons hosted in Japan for the past five years. Here we provide a review of the activities and outcomes from the BioHackathons held in 2011 in Kyoto and 2012 in Toyama. In order to efficiently implement semantic technologies in the life sciences, participants formed various sub-groups and worked on the following topics: Resource Description Framework (RDF) models for specific domains, text mining of the literature, ontology development, essential metadata for biological databases, platforms to enable efficient Semantic Web technology development and interoperability, and the development of applications for Semantic Web data. In this review, we briefly introduce the themes covered by these sub-groups. The observations made, conclusions drawn, and software development projects that emerged from these activities are discussed.

6.
Nucleic Acids Res ; 42(Database issue): D789-93, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24194605

ABSTRACT

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Subject(s)
Caenorhabditis elegans/genetics , Databases, Genetic , Genome, Helminth , Animals , Internet , Molecular Sequence Annotation , Nematoda/genetics
7.
PLoS One ; 6(9): e24716, 2011.
Article in English | MEDLINE | ID: mdl-21980353

ABSTRACT

BACKGROUND: The last two decades have witnessed a dramatic acceleration in the production of genomic sequence information and publication of biomedical articles. Despite the fact that genome sequence data and publications are two of the most heavily relied-upon sources of information for many biologists, very little effort has been made to systematically integrate data from genomic sequences directly with the biological literature. For a limited number of model organisms dedicated teams manually curate publications about genes; however for species with no such dedicated staff many thousands of articles are never mapped to genes or genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: To overcome the lack of integration between genomic data and biological literature, we have developed pubmed2ensembl (http://www.pubmed2ensembl.org), an extension to the BioMart system that links over 2,000,000 articles in PubMed to nearly 150,000 genes in Ensembl from 50 species. We use several sources of curated (e.g., Entrez Gene) and automatically generated (e.g., gene names extracted through text-mining on MEDLINE records) sources of gene-publication links, allowing users to filter and combine different data sources to suit their individual needs for information extraction and biological discovery. In addition to extending the Ensembl BioMart database to include published information on genes, we also implemented a scripting language for automated BioMart construction and a novel BioMart interface that allows text-based queries to be performed against PubMed and PubMed Central documents in conjunction with constraints on genomic features. Finally, we illustrate the potential of pubmed2ensembl through typical use cases that involve integrated queries across the biomedical literature and genomic data. CONCLUSION/SIGNIFICANCE: By allowing biologists to find the relevant literature on specific genomic regions or sets of functionally related genes more easily, pubmed2ensembl offers a much-needed genome informatics inspired solution to accessing the ever-increasing biomedical literature.


Subject(s)
Computational Biology/methods , PubMed , Animals , Chromosome Mapping/methods , Data Mining , Database Management Systems , Databases, Genetic , Genome , Genomics , Humans , Information Storage and Retrieval , MEDLINE , Models, Biological , Models, Genetic , Software , User-Computer Interface
8.
Database (Oxford) ; 2011: bar026, 2011.
Article in English | MEDLINE | ID: mdl-21930502

ABSTRACT

The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal.


Subject(s)
Database Management Systems , Databases, Factual , Genomics , Neoplasms/genetics , Gene Expression Profiling , Genetic Variation , Humans , International Cooperation , Internet , Societies , User-Computer Interface
9.
Database (Oxford) ; 2011: bar038, 2011.
Article in English | MEDLINE | ID: mdl-21930506

ABSTRACT

BioMart is a freely available, open source, federated database system that provides a unified access to disparate, geographically distributed data sources. It is designed to be data agnostic and platform independent, such that existing databases can easily be incorporated into the BioMart framework. BioMart allows databases hosted on different servers to be presented seamlessly to users, facilitating collaborative projects between different research groups. BioMart contains several levels of query optimization to efficiently manage large data sets and offers a diverse selection of graphical user interfaces and application programming interfaces to ensure that queries can be performed in whatever manner is most convenient for the user. The software has now been adopted by a large number of different biological databases spanning a wide range of data types and providing a rich source of annotation available to bioinformaticians and biologists alike.


Subject(s)
Computational Biology , Database Management Systems , Databases, Factual , Internet , User-Computer Interface , Cooperative Behavior , International Cooperation
10.
Database (Oxford) ; 2011: bar041, 2011.
Article in English | MEDLINE | ID: mdl-21930507

ABSTRACT

BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities.


Subject(s)
Biomedical Research , Database Management Systems , Databases, Factual , Internet , Animals , Bacteria , Fungi , Genome , Humans , International Cooperation , User-Computer Interface , Viruses
SELECTION OF CITATIONS
SEARCH DETAIL
...