Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Technol Cancer Res Treat ; 11(3): 203-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22376132

ABSTRACT

Patients receiving fractionated intensity-modulated radiation therapy (IMRT) for brain tumors are often immobilized with a thermoplastic mask; however, masks do not perfectly re-orient the patient due to factors including the maximum pressure which can be applied to the face, deformations of the mask assembly, patient compliance, etc. Consequently, ~3-5mm PTV margins (beyond the CTV) are often recommended. We aimed to determine if smaller PTV margins are feasible using mask immobilization coupled with 1) a gantry mounted CBCT image guidance system and 2) position corrections provided by a full six-degree of freedom (6-DOF) robotic couch. A cohort of 34 brain tumor patients was treated with fractionated IMRT. After the mask set-up, an initial CBCT was obtained and registered to the planning CT. The robotic couch corrected the misalignments in all 6-DOF and a pre-treatment verification CBCT was then obtained. The results indicated a repositioning alignment within our threshold of 1.5 mm (3D). Treatment was subsequently delivered. A post-treatment CBCT was obtained to quantify intra-fraction motion. Initial, pre-treatment and post-treatment CBCT image data was analyzed. A total of 505 radiation fractions were delivered to the 34 patients resulting in ~1800 CBCT scans. The initial median 3D (magnitude) set-up positioning error was 2.60 mm. Robotic couch corrections reduced the 3D median error to 0.53 mm prior to treatment. Intra-fraction movement was responsible for increasing the median 3D positioning error to 0.86 mm, with 8% of fractions having a 3D positioning error greater than 2 mm. Clearly CBCT image guidance coupled with a robotic 6-DOF couch dramatically improved the positioning accuracy for patients immobilized in a thermoplastic mask system; however, such intra-fraction motion would be too large for single fraction radiosurgery.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Immobilization/methods , Patient Positioning/methods , Radiotherapy Setup Errors/prevention & control , Radiotherapy, Intensity-Modulated/methods , Robotics/methods , Cohort Studies , Cone-Beam Computed Tomography/methods , Humans , Masks , Movement , Organs at Risk , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...