Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Electron. j. biotechnol ; 28: 52-57, July. 2017. ilus, graf, tab
Article in English | LILACS | ID: biblio-1015847

ABSTRACT

Background: Gardnerella vaginalis is a bacterial vaginosis (BV)-associated vaginal bacterium that produces the toxin vaginolysin (VLY). VLY is a pore-forming toxin that is suggested to be the main virulence factor of G. vaginalis. The high recurrence rate of BV and the emergence of antibiotic-resistant bacterial species demonstrate the need for the development of recombinant antibodies as novel therapeutic agents for disease treatment. Single-chain variable fragments (scFvs) generated against VLY exhibited reduced efficacy to neutralize VLY activity compared to the respective full-length antibodies. To improve the properties of scFvs, monospecific dimeric scFvs were generated by the genetic fusion of two anti-VLY scFv molecules connected by an alpha-helix-forming peptide linker. Results: N-terminal hexahistidine-tagged dimeric scFvs were constructed and produced in Escherichia coli and purified using metal chelate affinity chromatography. Inhibition of VLY-mediated human erythrocyte lysis by dimeric and monomeric scFvs was detected by in vitro hemolytic assay. The circulating half-life of purified scFvs in the blood plasma of mice was determined by ELISA. Dimeric anti-VLY scFvs showed higher neutralizing potency and extended circulating half-life than parental monomeric scFv. Conclusions: The protein obtained by the genetic fusion of two anti-VLY scFvs into a dimeric molecule exhibited improved properties in comparison with monomeric scFv. This new recombinant antibody might implement new possibilities for the prophylaxis and treatment of the diseases caused by the bacteria G. vaginalis.


Subject(s)
Animals , Mice , Bacterial Proteins/immunology , Bacterial Toxins/immunology , Antibodies, Neutralizing/metabolism , Single-Chain Antibodies/metabolism , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Enzyme-Linked Immunosorbent Assay , Gardnerella vaginalis , Vaginosis, Bacterial , Dimerization , Virulence Factors , Gene Fusion , Antibodies, Neutralizing/immunology , Single-Chain Antibodies/immunology , Half-Life
2.
Protein Eng Des Sel ; 25(10): 657-68, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22691702

ABSTRACT

In vitro synthesis of cDNA is one of the most important techniques in present molecular biology. Faithful synthesis of long cDNA on highly structured RNA templates requires thermostable and processive reverse transcriptases. In a recent attempt to increase the thermostability of the wt Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT), we have employed the compartmentalized ribosome display (CRD) evolution in vitro technique and identified a large set of previously unknown mutations that enabled cDNA synthesis at elevated temperatures. In this study, we have characterized a group of the M-MuLV RT variants (28 novel amino acid positions, 84 point mutants) carrying the individual mutations. The performance of point mutants (thermal inactivation rate, substrate-binding affinity and processivity) correlated remarkably well with the mutation selection frequency in the CRD experiment. By combining the best-performing mutations D200N, L603W, T330P, L139P and E607K, we have generated highly processive and thermostable multiply-mutated M-MuLV RT variants. The processivity of the best-performing multiple mutant increased to 1500 nt (65-fold improvement in comparison to the wt enzyme), and the maximum temperature of the full-length 7.5-kb cDNA synthesis was raised to 62°C (17° higher in comparison with the wt enzyme).


Subject(s)
Moloney murine leukemia virus/enzymology , Mutagenesis , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/genetics , Animals , DNA, Complementary/genetics , Mice , Moloney murine leukemia virus/genetics , Moloney murine leukemia virus/metabolism , Point Mutation , Protein Stability , RNA-Directed DNA Polymerase/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...