Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Neural Comput ; 34(3): 686-715, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35016225

ABSTRACT

A growing body of work has demonstrated the importance of ongoing oscillatory neural activity in sensory processing and the generation of sensorimotor behaviors. It has been shown, for several different brain areas, that sensory-evoked neural oscillations are generated from the modulation by sensory inputs of inherent self-sustained neural activity (SSA). This letter contributes to that strand of research by introducing a methodology to investigate how much of the sensory-evoked oscillatory activity is generated by SSA and how much is generated by sensory inputs within the context of sensorimotor behavior in a computational model. We develop an abstract model consisting of a network of three Kuramoto oscillators controlling the behavior of a simulated agent performing a categorical perception task. The effects of sensory inputs and SSAs on sensory-evoked oscillations are quantified by the cross product of velocity vectors in the phase space of the network under different conditions (disconnected without input, connected without input, and connected with input). We found that while the agent is carrying out the task, sensory-evoked activity is predominantly generated by SSA (93.10%) with much less influence from sensory inputs (6.90%). Furthermore, the influence of sensory inputs can be reduced by 10.4% (from 6.90% to 6.18%) with a decay in the agent's performance of only 2%. A dynamical analysis shows how sensory-evoked oscillations are generated from a dynamic coupling between the level of sensitivity of the network and the intensity of the input signals. This work may suggest interesting directions for neurophysiological experiments investigating how self-sustained neural activity influences sensory input processing, and ultimately affects behavior.


Subject(s)
Models, Theoretical , Sensation , Humans , Neurons/physiology , Sensation/physiology
2.
Front Neurorobot ; 16: 847054, 2022.
Article in English | MEDLINE | ID: mdl-36620482

ABSTRACT

We suggest that the influence of biology in 'biologically inspired robotics' can be embraced at a deeper level than is typical, if we adopt an enactive approach that moves the focus of interest from how problems are solved to how problems emerge in the first place. In addition to being inspired by mechanisms found in natural systems or by evolutionary design principles directed at solving problems posited by the environment, we can take inspiration from the precarious, self-maintaining organization of living systems to investigate forms of cognition that are also precarious and self-maintaining and that thus also, like life, have their own problems that must be be addressed if they are to persist. In this vein, we use a simulation to explore precarious, self-reinforcing sensorimotor habits as a building block for a robot's behavior. Our simulations of simple robots controlled by an Iterative Deformable Sensorimotor Medium demonstrate the spontaneous emergence of different habits, their re-enactment and the organization of an ecology of habits within each agent. The form of the emergent habits is constrained by the sensory modality of the robot such that habits formed under one modality (vision) are more similar to each other than they are to habits formed under another (audition). We discuss these results in the wider context of: (a) enactive approaches to life and mind, (b) sensorimotor contingency theory, (c) adaptationist vs. structuralist explanations in biology, and (d) the limits of functionalist problem-solving approaches to (artificial) intelligence.

3.
Front Psychol ; 11: 1549, 2020.
Article in English | MEDLINE | ID: mdl-32848986

ABSTRACT

We are currently witnessing the emergence of new forms of collective identities and a redefinition of the old ones through networked digital interactions, and these can be explicitly measured and analyzed. We distinguish between three major trends on the development of the concept of identity in the social realm: (1) an essentialist sense (based on conditions and properties shared by members of a group), (2) a representational or ideational sense (based on the application of categories by oneself or others), and (3) a relational and interactional sense (based on interaction processes between actors and their environments). The interactional approach aligns with current empirical and methodological progress in social network analysis. Moreover, it has been argued that, within the network society, the notion of collective identity (Melucci, 1995) in the political field must be rethought as technologically mediated and interactive. We suggest that collective identities should be understood as recurrent, cohesive, and coordinated communicative interaction networks. We here propose that such identities can be depicted by: (a) mapping and filtering a relevant interaction network, (b) delimiting a set of communities, (c) determining the strongly connected component(s) of such communities (the core identity) in a directed graph, and (d) defining the identity audiences and sources within the community. This technical graph-theoretical characterization is explained and justified in detail through a toy model and applied to three empirical case studies to characterize political identities in party politics (communicative interaction in Twitter during the Spanish elections in 2018), contentious politics in confrontation (in Twitter during the Catalan strike for independence 2019), and the multitudinous identity of Spanish Indignados/15 social movement (in Facebook fan pages 2011). We discuss how the proposed definition is useful to delimit and characterize the internal structure of collective identities in technopolitical interaction networks, and we suggest how the proposed methods can be improved and complemented with other approaches. We finally draw the theoretical implications of understanding collective identities as emerging from interaction networks in a progressive platformization of social interactions in a digital world.

4.
Front Syst Neurosci ; 10: 76, 2016.
Article in English | MEDLINE | ID: mdl-27721746

ABSTRACT

The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We conclude with a reflection about how our results contribute in a more general way to current progress in neuroscientific research.

5.
Front Hum Neurosci ; 9: 209, 2015.
Article in English | MEDLINE | ID: mdl-25941482

ABSTRACT

[This corrects the article on p. 590 in vol. 8, PMID: 25152724.].

6.
PLoS One ; 10(2): e0117465, 2015.
Article in English | MEDLINE | ID: mdl-25706744

ABSTRACT

During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/ƒ noise.


Subject(s)
Brain/physiology , Choice Behavior/physiology , Models, Neurological , Nerve Net/physiology , Neuronal Plasticity/physiology , Psychomotor Performance/physiology , Algorithms , Computer Simulation , Humans
7.
Front Hum Neurosci ; 8: 522, 2014.
Article in English | MEDLINE | ID: mdl-25100971

ABSTRACT

The notion of information processing has dominated the study of the mind for over six decades. However, before the advent of cognitivism, one of the most prominent theoretical ideas was that of Habit. This is a concept with a rich and complex history, which is again starting to awaken interest, following recent embodied, enactive critiques of computationalist frameworks. We offer here a very brief history of the concept of habit in the form of a genealogical network-map. This serves to provide an overview of the richness of this notion and as a guide for further re-appraisal. We identify 77 thinkers and their influences, and group them into seven schools of thought. Two major trends can be distinguished. One is the associationist trend, starting with the work of Locke and Hume, developed by Hartley, Bain, and Mill to be later absorbed into behaviorism through pioneering animal psychologists (Morgan and Thorndike). This tradition conceived of habits atomistically and as automatisms (a conception later debunked by cognitivism). Another historical trend we have called organicism inherits the legacy of Aristotle and develops along German idealism, French spiritualism, pragmatism, and phenomenology. It feeds into the work of continental psychologists in the early 20th century, influencing important figures such as Merleau-Ponty, Piaget, and Gibson. But it has not yet been taken up by mainstream cognitive neuroscience and psychology. Habits, in this tradition, are seen as ecological, self-organizing structures that relate to a web of predispositions and plastic dependencies both in the agent and in the environment. In addition, they are not conceptualized in opposition to rational, volitional processes, but as transversing a continuum from reflective to embodied intentionality. These are properties that make habit a particularly attractive idea for embodied, enactive perspectives, which can now re-evaluate it in light of dynamical systems theory and complexity research.

8.
Front Hum Neurosci ; 8: 590, 2014.
Article in English | MEDLINE | ID: mdl-25152724

ABSTRACT

In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel "iterant deformable sensorimotor medium (IDSM)," designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor "meso-scale" between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks.

9.
Front Hum Neurosci ; 8: 551, 2014.
Article in English | MEDLINE | ID: mdl-25126065

ABSTRACT

LEARNING TO PERCEIVE IS FACED WITH A CLASSICAL PARADOX: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the "laws" of sensorimotor contingencies (SMCs). In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget's theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget's theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.

10.
Artif Life ; 20(4): 471-89, 2014.
Article in English | MEDLINE | ID: mdl-24730768

ABSTRACT

Intermittency is ubiquitous in animal behavior. We depict a coordination problem that is part of the more general structure of intermittent adaptation: the adjustment-deployment dilemma. It captures the intricate compromise between the time spent in adjusting a response and the time used to deploy it: The adjustment process improves fitness with time, but during deployment fitness of the solution decays as environmental conditions change. We provide a formal characterization of the dilemma, and solve it using computational methods. We find that the optimal solution always results in a high intermittency between adjustment and deployment around a non-maximal fitness value. Furthermore we show that this non-maximal fitness value is directly determined by the ratio between the exponential coefficient of the fitness increase during adjustment and that of its decay coefficient during deployment. We compare the model results with experimental data obtained from observation and measurement of intermittent behavior in animals. Among other phenomena, the model is able to predict the uneven distribution of average duration of search and motion phases found among various species such as fishes, birds, and lizards. Despite the complexity of the problem, it can be shown to be solved by relatively simple mechanisms. We find that a model of a single continuous-time recurrent neuron, with the same parametric configuration, is capable of solving the dilemma for a wide set of conditions. We finally hypothesize that many of the different patterns of intermittent behavior found in nature might respond to optimal solutions of complexified versions of the adjustment-deployment dilemma under different constraints.


Subject(s)
Adaptation, Physiological , Behavior, Animal/physiology , Models, Biological , Animals , Environment , Species Specificity
11.
Artif Life ; 20(1): 5-28, 2014.
Article in English | MEDLINE | ID: mdl-23373978

ABSTRACT

Living agency is subject to a normative dimension (good-bad, adaptive-maladaptive) that is absent from other types of interaction. We review current and historical attempts to naturalize normativity from an organism-centered perspective, identifying two central problems and their solution: (1) How to define the topology of the viability space so as to include a sense of gradation that permits reversible failure, and (2) how to relate both the processes that establish norms and those that result in norm-following behavior. We present a minimal metabolic system that is coupled to a gradient-climbing chemotactic mechanism. Studying the relationship between metabolic dynamics and environmental resource conditions, we identify an emergent viable region and a precarious region where the system tends to die unless environmental conditions change. We introduce the concept of normative field as the change of environmental conditions required to bring the system back to its viable region. Norm-following, or normative action, is defined as the course of behavior whose effect is positively correlated with the normative field. We close with a discussion of the limitations and extensions of our model and some final reflections on the nature of norms and teleology in agency.


Subject(s)
Artificial Intelligence , Life , Models, Theoretical
12.
Front Comput Neurosci ; 7: 117, 2013.
Article in English | MEDLINE | ID: mdl-23986692

ABSTRACT

Despite the increase of both dynamic and embodied/situated approaches in cognitive science, there is still little research on how coordination dynamics under a closed sensorimotor loop might induce qualitatively different patterns of neural oscillations compared to those found in isolated systems. We take as a departure point the Haken-Kelso-Bunz (HKB) model, a generic model for dynamic coordination between two oscillatory components, which has proven useful for a vast range of applications in cognitive science and whose dynamical properties are well understood. In order to explore the properties of this model under closed sensorimotor conditions we present what we call the situated HKB model: a robotic model that performs a gradient climbing task and whose "brain" is modeled by the HKB equation. We solve the differential equations that define the agent-environment coupling for increasing values of the agent's sensitivity (sensor gain), finding different behavioral strategies. These results are compared with two different models: a decoupled HKB with no sensory input and a passively-coupled HKB that is also decoupled but receives a structured input generated by a situated agent. We can precisely quantify and qualitatively describe how the properties of the system, when studied in coupled conditions, radically change in a manner that cannot be deduced from the decoupled HKB models alone. We also present the notion of neurodynamic signature as the dynamic pattern that correlates with a specific behavior and we show how only a situated agent can display this signature compared to an agent that simply receives the exact same sensory input. To our knowledge, this is the first analytical solution of the HKB equation in a sensorimotor loop and qualitative and quantitative analytic comparison of spatially coupled vs. decoupled oscillatory controllers. Finally, we discuss the limitations and possible generalization of our model to contemporary neuroscience and philosophy of mind.

13.
Artif Life ; 18(1): 1-25, 2012.
Article in English | MEDLINE | ID: mdl-22035082

ABSTRACT

We use a minimal model of metabolism-based chemotaxis to show how a coupling between metabolism and behavior can affect evolutionary dynamics in a process we refer to as behavioral metabolution. This mutual influence can function as an in-the-moment, intrinsic evaluation of the adaptive value of a novel situation, such as an encounter with a compound that activates new metabolic pathways. Our model demonstrates how changes to metabolic pathways can lead to improvement of behavioral strategies, and conversely, how behavior can contribute to the exploration and fixation of new metabolic pathways. These examples indicate the potentially important role that the interplay between behavior and metabolism could have played in shaping adaptive evolution in early life and protolife. We argue that the processes illustrated by these models can be interpreted as an unorthodox instantiation of the principles of evolution by random variation and selective retention. We then discuss how the interaction between metabolism and behavior can facilitate evolution through (i) increasing exposure to environmental variation, (ii) making more likely the fixation of some beneficial metabolic pathways, (iii) providing a mechanism for in-the-moment adaptation to changes in the environment and to changes in the organization of the organism itself, and (iv) generating conditions that are conducive to speciation.


Subject(s)
Adaptation, Physiological , Biological Evolution , Chemotaxis , Metabolism , Bacterial Physiological Phenomena , Catalysis , Models, Biological
14.
PLoS Comput Biol ; 6(12): e1001004, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21170312

ABSTRACT

Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis.


Subject(s)
Bacterial Physiological Phenomena , Chemotaxis/physiology , Metabolism/physiology , Models, Biological , Escherichia coli/metabolism , Escherichia coli/physiology , Flagella/physiology , Fumarates/metabolism , Salmonella typhimurium/metabolism , Salmonella typhimurium/physiology , Systems Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...