Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 122(14): 140502, 2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31050491

ABSTRACT

Maximally entangled two-qubit states (Bell states) are of central importance in quantum technologies. We show that heralded generation of a maximally entangled state of two intrinsically open qubits can be realized in a one-dimensional (1D) system through strong coherent driving and continuous monitoring. In contrast to the natural idea that dissipation leads to decoherence and so destroys quantum effects, continuous measurement and strong interference in our 1D system generate a pure state with perfect quantum correlation between the two open qubits. Though the steady state is a trivial product state that has zero coherence or concurrence, we show that, with carefully tuned parameters, a Bell state can be generated in the system's quantum jump trajectories, heralded by a reflected photon. Surprisingly, this maximally entangled state survives the strong coherent state input-a classical state that overwhelms the system. This simple method to generate maximally entangled states using classical coherent light and photon detection may, since our qubits are in a 1D continuum, find application as a building block of quantum networks.

2.
Phys Rev Lett ; 122(7): 073601, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848634

ABSTRACT

Excitation of a bound state in the continuum (BIC) through scattering is problematic since it is by definition uncoupled. Here, we consider a type of dressed BIC and show that it can be excited in a nonlinear system through multiphoton scattering and delayed quantum feedback. The system is a semi-infinite waveguide with linear dispersion coupled to a qubit, in which a single-photon, dressed BIC is known to exist. We show that this BIC can be populated via multiphoton scattering in the non-Markovian regime, where the photon delay time (due to the qubit-mirror distance) is comparable with the qubit's decay. A similar process excites the BIC existing in an infinite waveguide coupled to two distant qubits, thus yielding stationary entanglement between the qubits. This shows, in particular, that single-photon trapping via multiphoton scattering can occur without band edge effects or cavities, the essential resource being instead the delayed quantum feedback provided by a single mirror or the emitters themselves.

3.
Phys Rev Lett ; 118(5): 050402, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28211744

ABSTRACT

We show that placing a quantum system in contact with an environment can enhance non-Fermi-liquid correlations, rather than destroy quantum effects, as is typical. The system consists of two quantum dots in series with two leads; the highly resistive leads couple charge flow through the dots to the electromagnetic environment, the source of quantum noise. While the charge transport inhibits a quantum phase transition, the quantum noise reduces charge transport and restores the transition. We find a non-Fermi-liquid intermediate fixed point for all strengths of the noise. For strong noise, it is similar to the intermediate fixed point of the two-impurity Kondo model.

4.
Phys Rev Lett ; 111(9): 090502, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-24033010

ABSTRACT

We propose a new scheme for quantum computation using flying qubits--propagating photons in a one-dimensional waveguide interacting with matter qubits. Photon-photon interactions are mediated by the coupling to a four-level system, based on which photon-photon π-phase gates (CONTROLLED-NOT) can be implemented for universal quantum computation. We show that high gate fidelity is possible, given recent dramatic experimental progress in superconducting circuits and photonic-crystal waveguides. The proposed system can be an important building block for future on-chip quantum networks.

5.
Phys Rev Lett ; 111(4): 047002, 2013 Jul 26.
Article in English | MEDLINE | ID: mdl-23931396

ABSTRACT

We develop an approach to realizing a topological phase transition and non-Abelian braiding statistics with dynamically induced Floquet Majorana fermions (FMFs). When the periodic driving potential does not break fermion parity conservation, FMFs can encode quantum information. Quasienergy analysis shows that a stable FMF zero mode and two other satellite modes exist in a wide parameter space with large quasienergy gaps, which prevents transitions to other Floquet states under adiabatic driving. We also show that in the asymptotic limit FMFs preserve non-Abelian braiding statistics and, thus, behave like their equilibrium counterparts.

6.
Opt Lett ; 38(5): 622-4, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455244

ABSTRACT

We investigate a decoy-state quantum key distribution (QKD) scheme with a sub-Poissonian single-photon source, which is generated on demand by scattering a coherent state off a two-level system in a one-dimensional waveguide. We show that, compared to coherent state decoy-state QKD, there is a two-fold increase of the key generation rate. Furthermore, the performance is shown to be robust against both parameter variations and loss effects of the system.

7.
Phys Rev Lett ; 110(24): 246802, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-25165952

ABSTRACT

We study the quantum phase transition of interacting electrons in quantum wires from a one-dimensional (1D) linear configuration to a quasi-1D zigzag arrangement using quantum Monte Carlo methods. As the density increases from its lowest values, first, the electrons form a linear Wigner crystal, then, the symmetry about the axis of the wire is broken as the electrons order in a quasi-1D zigzag phase, and, finally, the electrons form a disordered liquidlike phase. We show that the linear to zigzag phase transition is not destroyed by the strong quantum fluctuations present in narrow wires; it has characteristics which are qualitatively different from the classical transition.

8.
Phys Rev Lett ; 110(11): 113601, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-25166530

ABSTRACT

We study photon-photon correlations and entanglement generation in a one-dimensional waveguide coupled to two qubits with an arbitrary spatial separation. To treat the combination of nonlinear elements and 1D continuum, we develop a novel Green function method. The vacuum-mediated qubit-qubit interactions cause quantum beats to appear in the second-order correlation function. We go beyond the Markovian regime and observe that such quantum beats persist much longer than the qubit lifetime. A high degree of long-distance entanglement can be generated, increasing the potential of waveguide-QED systems for scalable quantum networking.

9.
Nature ; 488(7409): 61-4, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22859201

ABSTRACT

A Luttinger liquid is an interacting one-dimensional electronic system, quite distinct from the 'conventional' Fermi liquids formed by interacting electrons in two and three dimensions. Some of the most striking properties of Luttinger liquids are revealed in the process of electron tunnelling. For example, as a function of the applied bias voltage or temperature, the tunnelling current exhibits a non-trivial power-law suppression. (There is no such suppression in a conventional Fermi liquid.) Here, using a carbon nanotube connected to resistive leads, we create a system that emulates tunnelling in a Luttinger liquid, by controlling the interaction of the tunnelling electron with its environment. We further replace a single tunnelling barrier with a double-barrier, resonant-level structure and investigate resonant tunnelling between Luttinger liquids. At low temperatures, we observe perfect transparency of the resonant level embedded in the interacting environment, and the width of the resonance tends to zero. We argue that this behaviour results from many-body physics of interacting electrons, and signals the presence of a quantum phase transition. Given that many parameters, including the interaction strength, can be precisely controlled in our samples, this is an attractive model system for studying quantum critical phenomena in general, with wide-reaching implications for understanding quantum phase transitions in more complex systems, such as cold atoms and strongly correlated bulk materials.

10.
Phys Rev Lett ; 107(22): 223601, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22182028

ABSTRACT

The manipulation of individual, mobile quanta is a key goal of quantum communication; to achieve this, nonlinear phenomena in open systems can play a critical role. We show theoretically that a variety of strong quantum nonlinear phenomena occur in a completely open one-dimensional waveguide coupled to an N-type four-level system. We focus on photon blockade and the creation of single-photon states in the absence of a cavity. Many-body bound states appear due to the strong photon-photon correlation mediated by the four-level system. These bound states cause photon blockade, which can generate a sub-Poissonian single-photon source.

11.
J Chem Phys ; 132(23): 234105, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20572687

ABSTRACT

We investigate transport properties of molecular junctions under two types of bias--a short time pulse or an ac bias--by combining a solution for Green's functions in the time domain with electronic structure information coming from ab initio density functional calculations. We find that the short time response depends on lead structure, bias voltage, and barrier heights both at the molecule-lead contacts and within molecules. Under a low frequency ac bias, the electron flow either tracks or leads the bias signal (resistive or capacitive response) depending on whether the junction is perfectly conducting or not. For high frequency, the current lags the bias signal due to the kinetic inductance. The transition frequency is an intrinsic property of the junctions.

12.
Phys Rev Lett ; 105(25): 256801, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21231607

ABSTRACT

We propose a system of four quantum dots designed to study the competition between three types of interactions: Heisenberg, Kondo, and Ising. We find a rich phase diagram containing two sharp features: a quantum phase transition (QPT) between charge-ordered and charge-liquid phases and a dramatic resonance in the charge liquid visible in the conductance. The QPT is of the Kosterlitz-Thouless type with a discontinuous jump in the conductance at the transition. We connect the resonance phenomenon with the degeneracy of three levels in the isolated quadruple dot and argue that this leads to a Kondo-like emergent symmetry from left-right Z2 to U(1).

13.
Phys Rev Lett ; 102(5): 056806, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19257538

ABSTRACT

We study the symmetry classes of graphene quantum dots, both open and closed, through the conductance and energy level statistics. For abrupt termination of the lattice, these properties are well described by the standard orthogonal and unitary ensembles. However, for smooth mass confinement, special time-reversal symmetries associated with the sublattice and valley degrees of freedom are critical: they lead to block diagonal Hamiltonians and scattering matrices with blocks belonging to the unitary symmetry class even at zero magnetic field. While the effect of this structure is clearly seen in the conductance of open dots, it is suppressed in the spectral statistics of closed dots, because the intervalley scattering time is shorter than the time required to resolve a level spacing in the closed systems but longer than the escape time of the open systems.

14.
Nano Lett ; 9(3): 1011-4, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19203208

ABSTRACT

Molecular nanojunctions may support efficient thermoelectric conversion through enhanced thermopower. Recently, this quantity has been measured for several conjugated molecular nanojunctions with gold electrodes. Considering the wide variety of possible metal/molecule systems-almost none of which have been studied-it seems highly desirable to be able to calculate the thermopower of junctions with reasonable accuracy and high efficiency. To address this task, we demonstrate an effective approach based on the single particle green function (SPGF) method combined with density functional theory (DFT) using B3LYP and PBE0 energy functionals. Systematic good agreement between theory and experiment is obtained; indeed, much better agreement is found here than for comparable calculations of the conductance.


Subject(s)
Biophysics/methods , Nanotechnology/methods , Electric Conductivity , Electrochemistry/methods , Electrodes , Gold/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Protons , Reproducibility of Results , Thermodynamics
15.
Nano Lett ; 8(10): 3257-61, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18803424

ABSTRACT

Quantum interference in coherent transport through single molecular rings may provide a mechanism to control the current in molecular electronics. We investigate its applicability, using a single-particle Green function method combined with ab initio electronic structure calculations. We find that the quantum interference effect (QIE) is strongly dependent on the interaction between molecular pi-states and contact sigma-states. It is masked by sigma tunneling in small molecular rings with Au leads, such as benzene, due to strong pi-sigma hybridization, while it is preserved in large rings, such as [18]annulene, which then could be used to realize quantum interference effect (QIE) transistors.

16.
J Chem Phys ; 127(14): 141104, 2007 Oct 14.
Article in English | MEDLINE | ID: mdl-17935378

ABSTRACT

In the context of investigating organic molecules for molecular electronics, doping molecular wires with transition metal atoms provides additional means of controlling their transport behavior. The incorporation of transition metal atoms may generate spin dependence because the conduction channels of only one spin component align with the chemical potential of the leads, resulting in a spin polarized electric current. The possibility to create such a spin polarized current is investigated here with the organometallic moiety cobaltocene. According to our calculations, cobaltocene contacted with gold electrodes acts as a robust spin filter: Applying a voltage less than 0.2 V causes the current of one spin component crossing the molecular bridge to be two orders of magnitude larger than the other. We address the key issue of sensitivity to molecule-lead geometry by showing that a weak barrier generated by CH(2) groups between the cobaltocene and the leads is crucial in reducing the sensitivity to the contact geometry while only reducing the current modestly. These results suggest cobaltocene as a robust basic building block for molecular spintronics.

17.
J Chem Phys ; 127(14): 144107, 2007 Oct 14.
Article in English | MEDLINE | ID: mdl-17935386

ABSTRACT

We investigate electron transport through single conjugated molecules--including benzenedithiol, oligophenylene ethynylenes of different lengths, and a ferrocene-containing molecule sandwiched between two gold electrodes with different contact structures--by using a single-particle Green function method combined with density functional theory calculation. We focus on the effect of the basis set in the ab initio calculation. It is shown that the position of the Fermi energy in the transport gap is sensitive to the molecule-lead charge transfer which is affected by the size of basis set. This can dramatically change, by orders of magnitude, the conductance for long molecules, though the effect is only minor for short ones. A resonance around the Fermi energy tends to pin the position of the Fermi energy and suppress this effect. The result is discussed in comparison with experimental data.

18.
Phys Rev Lett ; 99(14): 146802, 2007 Oct 05.
Article in English | MEDLINE | ID: mdl-17930697

ABSTRACT

The transparency of contacts between conjugated molecules and metallic single-walled carbon nanotubes is investigated using a single-particle Green's function method which combines a Landauer approach with ab initio density functional theory. We find that the overall conjugation required for good contact transparency is broken by connecting through a six-member ring on the tube. Full conjugation achieved by an all-carbon contact through a five-member ring leads to near perfect contact transparency for different conjugated molecular bridges.

19.
J Chem Phys ; 126(20): 201102, 2007 May 28.
Article in English | MEDLINE | ID: mdl-17552745

ABSTRACT

The effect of the exchange-correlation potential in ab initio electron transport calculations is investigated by constructing optimized effective potentials using different energy functionals or the electron density from second-order perturbation theory. The authors calculate electron transmission through two atomic chain systems, one with charge transfer and one without. Dramatic effects are caused by two factors: changes in the energy gap and the self-interaction error. The error in conductance caused by the former is about one order of magnitude while that caused by the latter ranges from several times to two orders of magnitude, depending on the coupling strength and charge transfer. The implications for accurate quantum transport calculations are discussed.

20.
Phys Rev Lett ; 98(4): 040501, 2007 Jan 26.
Article in English | MEDLINE | ID: mdl-17358749

ABSTRACT

We analyze the problem of a quantum computer in a correlated environment protected from decoherence by quantum error correction using a perturbative renormalization group approach. The scaling equation obtained reflects the competition between the dimension of the computer and the scaling dimension of the correlations. For an irrelevant flow, the error probability is reduced to a stochastic form for a long time and/or a large number of qubits; thus, the traditional derivation of the threshold theorem holds for these error models. In this way, the "threshold theorem" of quantum computing is rephrased as a dimensional criterion.

SELECTION OF CITATIONS
SEARCH DETAIL
...