Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(7): 11057-11064, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570963

ABSTRACT

We report on Sb-based interband cascade lasers simultaneously grown on GaSb, GaAs and Si substrates. 8 µm x 2 mm devices exhibited similar threshold currents around 40 mA at 20°C and achieved continuous-wave (CW) operation up to 65°C on GaSb, GaAs and Si substrates despite a dislocation density of ∼ 4.108 cm-2 for both mismatched substrates. In the CW regime the output power of the devices emitting at 3.3 µm exceeded 30 mW/facet at 20°C. ICLs on GaAs and Si were subsequently aged at 50°C with an injection current of 200 mA, i.e. five times the laser-threshold current. No degradation was observed after 500 h of CW operation, demonstrating the high performance of ICLs and their tolerance to dislocations.

3.
Sci Rep ; 12(1): 18117, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302930

ABSTRACT

A THz nonstationary high-resolution spectrometer based on semiconductor superlattice multipliers is applied to investigate the dynamics of urine composition for cancer patients treated with chemotherapy. The molecular urine composition of healthy volunteers and cancer patients was compared and contrasted. We have found a set of nitriles that either appeared after chemotherapy or increased in content, which are expected as a result of bio-chemical damage to the liver. While no damage can be detected at this stage by existing clinical methods, the identified nitriles are candidates for further large-scale systematic testing towards markers for nephrotoxicity of chemotherapy at an early stage of the treatment, when conventional diagnostics cannot identify substantial organ damage. Comparing the metabolite concentration dynamics with side effects during chemotherapy might then help individuate patients prone to severe complications and correct the treatment. Our devices are game-changers for THz spectroscopy of liquids: they allow spanning four different frequency ranges for a general evaluation of most substances found in the liquid and selecting a spectral interval that bypasses the strong absorption lines from substances such as water and ammonia, which may otherwise mask the detection of the target metabolites.


Subject(s)
Neoplasms , Nitriles , Humans , Spectrum Analysis , Water/chemistry , Gases , Neoplasms/drug therapy
4.
Light Sci Appl ; 11(1): 165, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35650192

ABSTRACT

There is currently much activity toward the integration of mid-infrared semiconductor lasers on Si substrates for developing a variety of smart, compact, sensors based on Si-photonics integrated circuits. We review this rapidly-evolving research field, focusing on the epitaxial integration of antimonide lasers, the only technology covering the whole mid-to-far-infrared spectral range. We explain how a dedicated molecular-beam epitaxy strategy allows for achieving high-performance GaSb-based diode lasers, InAs/AlSb quantum cascade lasers, and InAs/GaInSb interband cascade lasers by direct growth on on-axis (001)Si substrates, whereas GaAs-on-Si or GaSb-on-Si layers grown by metal-organic vapor phase epitaxy in large capability epitaxy tools are suitable templates for antimonide laser overgrowth. We also show that etching the facets of antimonide lasers grown on Si is a viable approach in view of photonic integrated circuits. Remarkably, this review shows that while diode lasers are sensitive to residual crystal defects, the quantum cascade and interband cascade lasers grown on Si exhibit performances comparable to those of similar devices grown on their native substrates, due to their particular band structures and radiative recombination channels. Long device lifetimes have been extrapolated for interband cascade lasers. Finally, routes to be further explored are also presented.

5.
Opt Lett ; 47(7): 1689-1692, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35363719

ABSTRACT

Optical power measurements are needed in practically all technologies based on light. Here, we report a general-purpose optical power detector based on the photoacoustic effect. Optical power incident on the detector's black absorber produces an acoustic signal, which is further converted into an electrical signal using a silicon-cantilever pressure transducer. We demonstrate an exceptionally large spectral coverage from ultraviolet to far infrared, with the possibility for further extension to the terahertz region. The linear dynamic range of the detector reaches 80 dB, ranging from a noise-equivalent power of 6 n W/H z to 600 mW (independent of signal averaging time).

6.
Opt Express ; 30(4): 5531-5539, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35209513

ABSTRACT

Benzene is a gas known to be highly pollutant for the environment, for the water and cancerogenic for humans. In this paper, we present a sensor based on Quartz Enhanced Photoacoustic Spectroscopy dedicated to benzene analysis. Exploiting the infrared emission of a 14.85 µm quantum cascade laser, the sensor is working in an off-beam configuration, allowing easy alignment and stable measurements. The technique provides a very good selectivity to the sensor and a limit of detection of 30 ppbv in 1 s, i.e. a normalized noise equivalent absorption of 1.95 × 10-8 W.cm-1.Hz-1/2. The achieved performances of the sensor have enabled measurements on several air samples of a gas station showing a non-neglectable risk in case of long exposure.

7.
Photoacoustics ; 23: 100265, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34094850

ABSTRACT

We present an experimental comparison of photoacoustic responsivities of common highly absorbing carbon-based materials. The comparison was carried out with parameters relevant for photoacoustic power detectors and Fourier-transform infrared (FTIR) spectroscopy: we covered a broad wavelength range from the visible red to far infrared (633 nm to 25 µm) and the regime of low acoustic frequencies (< 1 kHz). The investigated materials include a candle soot-based coating, a black paint coating and two different carbon nanotube coatings. Of these, the low-cost soot absorber produced clearly the highest photoacoustic response over the entire measurement range.

8.
Opt Lett ; 45(21): 5962-5965, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33137041

ABSTRACT

We report a novel, to the best of our knowledge, photoacoustic spectrometer for trace gas sensing of benzene. A quantum cascade laser emitting at the wavelength 14.8 µm is used as the light source in the spectroscopic detection. This wavelength region contains the strongest vibrational band of benzene, which is free of spectral overlap from common trace gases, making it a strong candidate for sensitive benzene detection. Cantilever-enhanced photoacoustic spectroscopy is used for detection. This simple and robust measurement setup can reach a benzene detection limit below 1 ppb.

9.
Opt Express ; 27(5): 7435-7446, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30876307

ABSTRACT

An off-beam quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor was designed for ethylene detection using a distributed-feedback quantum cascade laser (QCL) operating in the mid-infrared around 11 µm. The acoustic microresonator configuration was experimentally optimized using an original open-cell photoacoustic setup with a MEMS microphone. Correction factors based on theoretical acoustic models were introduced in order to accurately describe the response of millimeter-sized acoustic resonators. The optimized QEPAS sensor exhibited a limit of detection of 60 ppb for 60 s integration, giving a NNEA of 4.8 × 10-8 W·cm-1·Hz-0.5.

10.
Opt Express ; 26(11): 14433-14443, 2018 May 28.
Article in English | MEDLINE | ID: mdl-29877481

ABSTRACT

Usually electromagnetic modes inside a laser resonator are a matter of the theoretical studies. In a sense we manage "to have a look into a whispering gallery mode (WGM) resonator" and observe how the resonator modes arrange in reality. The picture occurs to be quite different from the commonly used Bessel modes in a disk resonator. A chance to explore optical modes inside a resonator appears in a WGM laser with a cleaved cavity. The flat laser facet gives an opportunity to study both far and near field patterns formed by different modes. In this research we use a high resolution technique of detection of laser emission based on an atomic force microscope, which allowed us to visualize even high Q modes normally sealed inside the resonator. This information was completed with spatially resolved emission spectra and far-field patterns measured using an infrared camera. The analysis of the obtained results using both wave and geometrical optics approaches and finite elements simulations showed that emission of the studied devices is governed by a few low order optical modes experiencing a small number of reflections from the resonator walls. These modes can be considered as counter propagating Gaussian beams and their interference at the laser facet was also observed in the experiment. This work showed that, contrary to conventional ridge or surface emitting lasers, in such deformed disk resonators outputs of different optical modes are spatially separated and can be studied individually along the cleaved facet of the laser.

11.
Sci Rep ; 8(1): 7206, 2018 May 08.
Article in English | MEDLINE | ID: mdl-29739962

ABSTRACT

Technological platforms offering efficient integration of III-V semiconductor lasers with silicon electronics are eagerly awaited by industry. The availability of optoelectronic circuits combining III-V light sources with Si-based photonic and electronic components in a single chip will enable, in particular, the development of ultra-compact spectroscopic systems for mass scale applications. The first circuits of such type were fabricated using heterogeneous integration of semiconductor lasers by bonding the III-V chips onto silicon substrates. Direct epitaxial growth of interband III-V laser diodes on silicon substrates has also been reported, whereas intersubband emitters grown on Si have not yet been demonstrated. We report the first quantum cascade lasers (QCLs) directly grown on a silicon substrate. These InAs/AlSb QCLs grown on Si exhibit high performances, comparable with those of the devices fabricated on their native InAs substrate. The lasers emit near 11 µm, the longest emission wavelength of any laser integrated on Si. Given the wavelength range reachable with InAs/AlSb QCLs, these results open the way to the development of a wide variety of integrated sensors.

12.
Opt Express ; 24(16): 18799-806, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27505843

ABSTRACT

We report low threshold InAs/AlSb quantum cascade lasers emitting near 15 µm. The devices are based on a vertical design similar to those employed previously in far infrared InAs-based QCLs, whereas the doping level of the active core is considerably decreased. The lasers exhibit a threshold current density as low as 730 A/cm2 in pulsed mode at room temperature and can operate in this regime up to 410K. The continuous wave regime of operation has been achieved in these devices at temperatures up to 20°C. The cw regime is demonstrated for InAs-based QCLs for the first time at room temperature.

13.
Opt Express ; 23(15): 19118-28, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26367575

ABSTRACT

We report on the growth, fabrication, experimental study and application in an absorption gas setup of distributed feed-back antimonide diode lasers with buried grating. First, half laser structures were grown by molecular beam epitaxy on GaSb substrates and stopped at the top of the waveguide. A second order Bragg grating was then defined by interferometric lithography on the top of the structure and dry etched by Reactive Ion Etching. The grating was, afterwards, buried thanks to an epitaxial regrowth of the top cladding layer. Finally, the wafer was processed using standard photolithography and wet etched into 10 µm-wide laser ridges. A single frequency laser emission around 2.3 µm was recorded, a maximum output power of 25 mW and a total continuous tuning range reaching 4.2 nm at fixed temperature. A device has been used to detect methane gas and shows strong potential for gas spectroscopy. This process was also replicated for a target of 3 µm laser emission. These devices showed an output power of 2.5 mW and a SMSR of at least 23 dB, with a 2.5 nm continuous tuning range at fixed temperature.

14.
Inorg Chem ; 47(4): 1295-300, 2008 Feb 18.
Article in English | MEDLINE | ID: mdl-18220343

ABSTRACT

Anodic oxidation of rhenium in ethanol in the presence of LiCl as a conductive additive results with high yield in formation of a new oxoethoxide cluster, Re(4)O(4)(OEt)(12). The structure of the planar centrosymmetric metal-oxygen core of this molecule is composed of four edge-sharing Re(V)O(6) octahedra. Eight electrons are available for the formation of metal-metal bonds indicated by five relatively short Re-Re distances within the Re 4-rhombus, a "planar butterfly" type cluster. The theoretical calculations are indicating relatively low contribution of metal-metal bonding in the stability of the core. The stability of the +V-oxidation state, unusual for rhenium alkoxides can be at least partially attributed to the size effects in the packing of ligands. The X-ray powder study indicates that treatment of Re(4)O(4)(OEt)(12). in ambient atmosphere rapidly transforms it into a mixed-valence derivative Re(4)O(6)(OEt)(10) with a structure related to the earlier investigated cluster Re(4)O(6)(O(i)Pr)(10). Thermal decomposition of the latter rhenium oxoethoxide results in reduction to rhenium metal at as low temperatures as 380 degrees C, producing aggregates of metal nanoparticles with the average size of 3 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...