Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(49): 31242-31248, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33199633

ABSTRACT

Understanding what, how, and how often apex predators hunt is important due to their disproportionately large effects on ecosystems. In Lake Baikal with rich endemic fauna, Baikal seals appear to eat, in addition to fishes, a tiny (<0.1 g) endemic amphipod Macrohectopus branickii (the world's only freshwater planktonic species). Yet, its importance as prey to seals is unclear. Globally, amphipods are rarely targeted by single-prey feeding (i.e., nonfilter-feeding) mammals, presumably due to their small size. If M. branickii is energetically important prey, Baikal seals would exhibit exceptionally high foraging rates, potentially with behavioral and morphological specializations. Here, we used animal-borne accelerometers and video cameras to record Baikal seal foraging behavior. Unlike the prevailing view that they predominantly eat fishes, they also hunted M. branickii at the highest rates (mean, 57 individuals per dive) ever recorded for single-prey feeding aquatic mammals, leading to thousands of catches per day. These rates were achieved by gradual changes in dive depth following the diel vertical migration of M. branickii swarms. Examining museum specimens revealed that Baikal seals have the most specialized comb-like postcanine teeth in the subfamily Phocinae, allowing them to expel water while retaining prey during high-speed foraging. Our findings show unique mammal-amphipod interactions in an ancient lake, demonstrating that organisms even smaller than krill can be important prey for single-prey feeding aquatic mammals if the environment and predators' adaptations allow high foraging rates. Further, our finding that Baikal seals directly eat macroplankton may explain why they are so abundant in this ultraoligotrophic lake.


Subject(s)
Conservation of Natural Resources , Ecosystem , Feeding Behavior/physiology , Seals, Earless/physiology , Amphipoda/physiology , Animals , Fishes/physiology , Lakes , Siberia
2.
J Exp Biol ; 218(Pt 17): 2793-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26139663

ABSTRACT

Many pinnipeds frequently rest on land or ice, but some species remain in open waters for weeks or months, raising the question of how they rest. A unique type of dive, called drift dives, has been reported for several pinnipeds with suggested functions of rest, food processing and predator avoidance. Prolonged surfacing periods have also been observed in captive seals and are thought to aid food processing. However, information from other species in a different environment would be required to better understand the nature and function of this behavior. In this study, we attached multi-sensor tags to Baikal seals Pusa sibirica, a rare, freshwater species that has no aquatic predators and few resting grounds during the ice-free season. The seals exhibited repeated drift dives (mean depth, 116 m; duration, 10.1 min) in the daytime and prolonged periods at the surface (mean duration, 1.3 h) mainly around dawn. Drift dives and prolonged surfacing periods were temporally associated and observed between a series of foraging dives, suggesting a similar function, i.e. a combination of resting and food processing. The maximum durations of both drift and foraging dives were 15.4 min, close to the aerobic dive limit of this species; therefore, metabolic rates might not be significantly depressed during drift dives, further supporting the function of food processing rather than purely resting. Our results also show that drift diving can occur in a predator-free environment, and thus predator avoidance is not a general explanation of drift dives in pinnipeds.


Subject(s)
Diving/physiology , Rest/physiology , Seals, Earless/physiology , Animals , Behavior, Animal , Digestion/physiology , Feeding Behavior/physiology , Lakes , Remote Sensing Technology
3.
J Exp Biol ; 209(Pt 17): 3269-80, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16916962

ABSTRACT

Buoyancy is one of the primary external forces acting on air-breathing divers and it can affect their swimming energetics. Because the body composition of marine mammals (i.e. the relative amounts of lower-density lipid and higher-density lean tissue) varies individually and seasonally, their buoyancy also fluctuates widely, and individuals would be expected to adjust their stroke patterns during dives accordingly. To test this prediction, we attached acceleration data loggers to four free-ranging Baikal seals Phoca sibirica in Lake Baikal and monitored flipper stroking activity as well as swimming speed, depth and inclination of the body axis (pitch). In addition to the logger, one seal (Individual 4) was equipped with a lead weight that was jettisoned after a predetermined time period so that we had a set of observations on the same individual with different body densities. These four data sets revealed the general diving patterns of Baikal seals and also provided direct insights into the influence of buoyancy on these patterns. Seals repeatedly performed dives of a mean duration of 7.0 min (max. 15.4 min), interrupted by a mean surface duration of 1.2 min. Dive depths were 66 m on average, but varied substantially, with a maximum depth of 324 m. The seals showed different stroke patterns among individuals; some seals stroked at lower rates during descent than ascent, while the others had higher stroke rates during descent than ascent. When the lead weight was detached from Individual 4, the seal increased its stroke rate in descent by shifting swimming mode from prolonged glides to more stroke-and-glide swimming, and decreased its stroke rate in ascent by shifting from continuous stroking to stroke-and-glide swimming. We conclude that seals adopt different stroke patterns according to their individual buoyancies. We also demonstrate that the terminal speed reached by Individual 4 during prolonged glide in descent depended on its total buoyancy and pitch, with higher speeds reached in the weighted condition and at steeper pitch. A simple physical model allowed us to estimate the body density of the seal from the speed and pitch (1,027-1,046 kg m(-3), roughly corresponding to 32-41% lipid content, for the weighted condition; 1,014-1,022 kg m(-3), 43-47% lipid content, for the unweighted condition).


Subject(s)
Acceleration , Body Composition/physiology , Diving/physiology , Forelimb/physiology , Phoca/physiology , Swimming/physiology , Animals , Biomechanical Phenomena , Female , Fresh Water , Male , Models, Theoretical , Russia
SELECTION OF CITATIONS
SEARCH DETAIL
...