Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793225

ABSTRACT

Microfluidic technology provides a solution to the challenge of continuous CaCO3 particle synthesis. In this study, we utilized a 3D-printed microfluidic chip to synthesize CaCO3 micro- and nanoparticles in vaterite form. Our primary focus was on investigating a continuous one-phase synthesis method tailored for the crystallization of these particles. By employing a combination of confocal and scanning electron microscopy, along with Raman spectroscopy, we were able to thoroughly evaluate the synthesis efficiency. This evaluation included aspects such as particle size distribution, morphology, and polymorph composition. The results unveiled the existence of two distinct synthesis regimes within the 3D-printed microfluidic chips, which featured a channel cross-section of 2 mm2. In the first regime, which was characterized by chaotic advection, particles with an average diameter of around 2 µm were produced, thereby displaying a broad size distribution. Conversely, the second regime, marked by diffusion mixing, led to the synthesis of submicron particles (approximately 800-900 nm in diameter) and even nanosized particles (70-80 nm). This research significantly contributes valuable insights to both the understanding and optimization of microfluidic synthesis processes, particularly in achieving the controlled production of submicron and nanoscale particles.

2.
Vaccines (Basel) ; 12(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38400113

ABSTRACT

The emergence of SARS-CoV-2 mutant variants has posed a significant challenge to both the prevention and treatment of COVID-19 with anti-coronaviral neutralizing antibodies. The latest viral variants demonstrate pronounced resistance to the vast majority of human monoclonal antibodies raised against the ancestral Wuhan variant. Less is known about the susceptibility of the evolved virus to camelid nanobodies developed at the start of the pandemic. In this study, we compared nanobody repertoires raised in the same llama after immunization with Wuhan's RBD variant and after subsequent serial immunization with a variety of RBD variants, including that of SARS-CoV-1. We show that initial immunization induced highly potent nanobodies, which efficiently protected Syrian hamsters from infection with the ancestral Wuhan virus. These nanobodies, however, mostly lacked the activity against SARS-CoV-2 omicron-pseudotyped viruses. In contrast, serial immunization with different RBD variants resulted in the generation of nanobodies demonstrating a higher degree of somatic mutagenesis and a broad range of neutralization. Four nanobodies recognizing distinct epitopes were shown to potently neutralize a spectrum of omicron variants, including those of the XBB sublineage. Our data show that nanobodies broadly neutralizing SARS-CoV-2 variants may be readily induced by a serial variant RBD immunization.

3.
J Pers Med ; 12(6)2022 May 29.
Article in English | MEDLINE | ID: mdl-35743680

ABSTRACT

Immune evasion of SARS-CoV-2 undermines current strategies tocounteract the pandemic, with the efficacy of therapeutic virus-neutralizing monoclonal antibodies (nAbs) being affected the most. In this work, we asked whether two previously identified human cross-neutralizing nAbs, iB14 (class VH1-58) and iB20 (class VH3-53/66), are capable of neutralizing the recently emerged Omicron (BA.1) variant. Both nAbs were found to bind the Omicron RBD with a nanomolar affinity, yet they displayed contrasting functional features. When tested against Omicron, the neutralizing activity of iB14 was reduced 50-fold, whereas iB20 displayed a surprising increase in activity. Thus, iB20 is a unique representative of the VH3-53/66-class of nAbs in terms of breadth of neutralization, which establishes it as a candidate for COVID-19 therapy and prophylactics.

4.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216301

ABSTRACT

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Subject(s)
COVID-19 Vaccines/chemistry , COVID-19 Vaccines/pharmacology , Immunity, Humoral/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Animals , Binding Sites , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dextrans/chemistry , Female , HEK293 Cells , Humans , Mice, Inbred BALB C , Protein Domains , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spermidine/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology , Vero Cells
5.
Cells ; 10(12)2021 12 07.
Article in English | MEDLINE | ID: mdl-34943946

ABSTRACT

FGF21 is a promising candidate for treating obesity, diabetes, and NAFLD; however, some of its pharmacological effects are sex-specific in mice with the Ay mutation that evokes melanocortin receptor 4 blockade, obesity, and hepatosteatosis. This suggests that the ability of FGF21 to correct melanocortin obesity may depend on sex. This study compares FGF21 action on food intake, locomotor activity, gene expression, metabolic characteristics, and liver state in obese Ay males and females. Ay mice were administered FGF21 for seven days, and metabolic parameters and gene expression in different tissues were assessed. Placebo-treated females were more obese than males and had lower levels of blood insulin and liver triglycerides, and higher expression of genes for insulin signaling in the liver, white adipose tissue (WAT) and muscles, and pro-inflammatory cytokines in the liver. FGF21 administration did not affect body weight, and increased food intake, locomotor activity, expression of Fgf21 and Ucp1 in brown fat and genes related to lipolysis and insulin action in WAT regardless of sex; however, it decreased hyperinsulinemia and hepatic lipid accumulation and increased muscle expression of Cpt1 and Irs1 only in males. Thus, FGF21's beneficial effects on metabolic disorders associated with melanocortin obesity are more pronounced in males.


Subject(s)
Fatty Liver/drug therapy , Fibroblast Growth Factors/pharmacology , Insulin/blood , Liver/metabolism , Obesity/drug therapy , Animals , Diet, High-Fat , Energy Metabolism/genetics , Fatty Liver/blood , Female , Fibroblast Growth Factors/genetics , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Resistance/genetics , Liver/pathology , Male , Melanocortins/toxicity , Mice , Mice, Obese , Obesity/blood , Obesity/chemically induced , Obesity/genetics , Sex Characteristics , Triglycerides/metabolism , Uncoupling Protein 1/genetics
6.
Int J Mol Sci ; 22(19)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34638898

ABSTRACT

The preference for high-calorie foods depends on sex and contributes to obesity development. Fibroblast growth factor 21 (FGF21) beneficially affects taste preferences and obesity, but its action has mainly been studied in males. The aim of this study was to compare the effects of FGF21 on food preferences and glucose and lipid metabolism in C57Bl/6J male and female mice with diet-induced obesity. Mice were injected with FGF21 or vehicle for 7 days. Body weight, choice between standard (SD) and high-fat (HFD) diets, blood parameters, and gene expression in white (WAT) and brown (BAT) adipose tissues, liver, muscles, and the hypothalamus were assessed. Compared to males, females had a greater preference for HFD; less WAT; lower levels of cholesterol, glucose, and insulin; and higher expression of Fgf21, Insr, Ppara, Pgc1, Acca and Accb in the liver and Dio2 in BAT. FGF21 administration decreased adiposity; blood levels of cholesterol, glucose, and insulin; hypothalamic Agrp expression, increased SD intake, decreased HFD intake independently of sex, and increased WAT expression of Pparg, Lpl and Lipe only in females. Thus, FGF21 administration beneficially affected mice of both sexes despite obesity-associated sex differences in metabolic characteristics, and it induced female-specific activation of gene expression in WAT.


Subject(s)
Adipose Tissue/drug effects , Energy Metabolism/drug effects , Fibroblast Growth Factors/administration & dosage , Gene Expression/drug effects , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Cholesterol/blood , Diet, High-Fat/adverse effects , Energy Metabolism/genetics , Fatty Acid Synthase, Type I/genetics , Female , Fibroblast Growth Factors/genetics , Insulin/blood , Male , Mice, Inbred C57BL , Mice, Obese , Obesity/etiology , Obesity/genetics , PPAR alpha/genetics , Pyruvate Kinase/genetics , Sex Factors
7.
Biomedicines ; 9(10)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34680410

ABSTRACT

There is experimental evidence that chronic social defeat stress is accompanied by the development of an anxiety, development of a depression-like state, and downregulation of serotonergic genes in midbrain raphe nuclei of male mice. Our study was aimed at investigating the effects of chronic lithium chloride (LiCl) administration on anxiety behavior and the expression of serotonergic genes in midbrain raphe nuclei of the affected mice. A pronounced anxiety-like state in male mice was induced by chronic social defeat stress in daily agonistic interactions. After 6 days of this stress, defeated mice were chronically treated with saline or LiCl (100 mg/kg, i.p., 2 weeks) during the continuing agonistic interactions. Anxiety was assessed by behavioral tests. RT-PCR was used to determine Tph2, Htr1a, Htr5b, and Slc6a4 mRNA expression. The results revealed anxiolytic-like effects of LiCl on social communication in the partition test and anxiogenic-like effects in both elevated plus-maze and social interaction tests. Chronic LiCl treatment upregulated serotonergic genes in midbrain raphe nuclei. Thus, LiCl effects depend on the treatment mode, psycho-emotional state of the animal, and experimental context (tests). It is assumed that increased expression of serotonergic genes is accompanied by serotonergic system activation and, as a side effect, by higher anxiety.

8.
Cell Discov ; 7(1): 96, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34667147

ABSTRACT

In the absence of virus-targeting small-molecule drugs approved for the treatment and prevention of COVID-19, broadening the repertoire of potent SARS-CoV-2-neutralizing antibodies represents an important area of research in response to the ongoing pandemic. Systematic analysis of such antibodies and their combinations can be particularly instrumental for identification of candidates that may prove resistant to the emerging viral escape variants. Here, we isolated a panel of 23 RBD-specific human monoclonal antibodies from the B cells of convalescent patients. A surprisingly large proportion of such antibodies displayed potent virus-neutralizing activity both in vitro and in vivo. Four of the isolated nAbs can be categorized as ultrapotent with an apparent IC100 below 16 ng/mL. We show that individual nAbs as well as dual combinations thereof retain activity against currently circulating SARS-CoV-2 variants of concern (such as B.1.1.7, B.1.351, B.1.617, and C.37), as well as against other viral variants. When used as a prophylactics or therapeutics, these nAbs could potently suppress viral replication and prevent lung pathology in SARS-CoV-2-infected hamsters. Our data contribute to the rational development of oligoclonal therapeutic nAb cocktails mitigating the risk of SARS-CoV-2 escape.

9.
Clin Transl Immunology ; 10(2): e1245, 2021.
Article in English | MEDLINE | ID: mdl-33552508

ABSTRACT

OBJECTIVES: To predict the spread of coronavirus disease (COVID-19), information regarding the immunological memory for disease-specific antigens is necessary. The possibility of reinfection, as well as the efficacy of vaccines for COVID-19 that are currently under development, will largely depend on the quality and longevity of immunological memory in patients. To elucidate the process of humoral immunity development, we analysed the generation of plasmablasts and virus receptor-binding domain (RBD)-specific memory B (Bmem) cells in patients during the acute phase of COVID-19. METHODS: The frequencies of RBD-binding plasmablasts and RBD-specific antibody-secreting cells (ASCs) in the peripheral blood samples collected from patients with COVID-19 were measured using flow cytometry and the ELISpot assay. RESULTS: The acute phase of COVID-19 was characterised by the transient appearance of total as well as RBD-binding plasmablasts. ELISpot analysis indicated that most patients exhibited a spontaneous secretion of RBD-specific ASCs in the circulation with good correlation between the IgG and IgM subsets. IL-21/CD40L stimulation of purified B cells induced the activation and proliferation of Bmem cells, which led to the generation of plasmablast phenotypic cells as well as RBD-specific ASCs. No correlation was observed between the frequency of Bmem cell-derived and spontaneous ASCs, suggesting that the two types of ASCs were weakly associated with each other. CONCLUSION: Our findings reveal that SARS-CoV-2-specific Bmem cells are generated during the acute phase of COVID-19. These findings can serve as a basis for further studies on the longevity of SARS-CoV-2-specific B-cell memory.

10.
Front Immunol ; 9: 1079, 2018.
Article in English | MEDLINE | ID: mdl-29892283

ABSTRACT

The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.


Subject(s)
Fishes/genetics , Genes, Immunoglobulin Light Chain , Genetic Variation , Immunoglobulin Isotypes/genetics , Amino Acid Sequence , Animals , Fishes/classification , Gene Expression Profiling , Genetic Loci , Genome , Genomics , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence , Phylogeny , Transcriptome , V(D)J Recombination
11.
Cytometry B Clin Cytom ; 94(4): 683-687, 2018 07.
Article in English | MEDLINE | ID: mdl-29236355

ABSTRACT

BACKGROUND: Fc receptor-like A (FCRLA) is a unique member of a family of Fc receptor like-molecules that lacks a transmembrane region and is an ER-resident protein. In mice and humans, FCRLA has been known as a B cell specific protein. We report here that, in humans, FCRLA is also expressed in a subpopulation of plasmacytoid dendritic cells (pDCs). METHODS: Human peripheral blood mononuclear cells (PBMC), splenocytes, and tonsillar cells were stained for lineage markers followed by fixation/saponin permeabilization and intracellular staining for FCRLA, and then analyzed by flow cytometry with CD123 and CD303 used as pDC markers. RESULTS: We conducted an extensive flow cytometric analysis of a rare population of CD19-FCRLA+ cells found for the first time in human lymphoid tissues that we assigned to pDCs as they were lin-/CD123+/CD303+. FCRLA expression in human pDCs was further confirmed by the RT-PCR analysis of cDNA of pDCs isolated from the peripheral blood of a healthy donor. FCRLA-positive pDCs expressed a lower level of HLA-DR than their FCRLA-negative counterparts. CONCLUSIONS: FCRLA has long been viewed as a B cell specific protein, and this is the first time its expression has also been shown in human pDCs. © 2017 International Clinical Cytometry Society.


Subject(s)
Dendritic Cells/immunology , Receptors, Immunologic/biosynthesis , Flow Cytometry , Humans , Receptors, Fc
12.
Monoclon Antib Immunodiagn Immunother ; 33(4): 209-14, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25170999

ABSTRACT

SLAMF9 is a member of the signaling lymphocyte-activating molecule (SLAM) immunoreceptor family. The SLAM family receptors are expressed in a broad range of immune cells and play an important role in immunity. To date, SLAMF9 is the least studied member of this family. Its ligand, signaling properties, and cells on whose surface it is expressed are unknown. We generated hybridoma clones 6E11 and 7G5 secreting monoclonal antibodies specific to human SLAMF9. BALB/c mice were immunized with Escherichia coli-expressed purified SLAMF9 protein; splenocytes from these mice were fused with mouse myeloma cell line NS-1. Based on isotyping of the MAbs, clone 6E11 was referred to the IgG1 subclass, while 7G5 to IgG2b. The specificity of these MAbs was assessed by ELISA, immunoblotting, immunohistochemistry, and flow cytometry. According to the results of epitope analysis, clone 6E11 reacts with the C2-like domain, whereas 7G5 is specific to the V-like domain of the SLAMF9 molecule. The generated MAbs were demonstrated to be applicable in various immunochemical analyses. They may be useful tools in studies clarifying the expression and function of human SLAMF9.


Subject(s)
Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antigens, CD/genetics , Antigens, CD/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Animals , Antibody Specificity , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Escherichia coli , Flow Cytometry , Humans , Immunoblotting , Immunohistochemistry , Mice , Mice, Inbred BALB C , Protein Structure, Tertiary/genetics , Signaling Lymphocytic Activation Molecule Family , Signaling Lymphocytic Activation Molecule Family Member 1
13.
Immunogenetics ; 63(10): 679-89, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21667045

ABSTRACT

We studied the evolution of the CD2 family in tetrapods by extracting and analyzing CD2-like genes from the genome of the amphibian species Silurana (Xenopus) tropicalis. An exhaustive analysis of the genomic and cDNA databases resulted in the identification of at least 70 CD2-like genes. The predicted receptors mostly maintain the typical VC2 ectodomains, but are highly diverse in their C-termini, which suggests a broad range of signaling capacities. Apart from the presumed monomeric receptors with ITSM and/or ITIM motifs, the Silurana family includes secreted proteins. Furthermore, a fraction of the receptors contain a conserved TM subtype with the NxxR motif that is known to promote an association with the FcRγ subunit and that was previously found in the members of the FcR- and KIR-related receptors. The expression analysis of a sample of the genes showed broad tissue distribution and gene-specific expression patterns. Phylogenetic analysis predicted that the CD58, CD150/SLAM, and SLAMF8 genes were maintained as single-copy genes in both mammals and amphibians, while others expanded/contracted in a lineage-specific manner.


Subject(s)
Antigens, CD/genetics , CD2 Antigens/genetics , Receptors, Cell Surface/genetics , Xenopus/immunology , Amino Acid Sequence , Animals , Antigens, CD/classification , CD2 Antigens/classification , Evolution, Molecular , Molecular Sequence Data , Phylogeny , Receptors, Cell Surface/classification , Sequence Alignment , Signal Transduction , Signaling Lymphocytic Activation Molecule Family Member 1 , Xenopus/genetics
14.
Immunol Lett ; 134(2): 174-82, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-20933011

ABSTRACT

FCRL6 receptor is a more recently identified representative of the FCRL family. We generated a panel of mouse mAbs to baculovirus-derived recombinant FCRL6 protein. The clone 7B2 was found to specifically recognize a 63kDa protein expressed preferentially on the surface of CD8 T and CD56 NK cells in human peripheral blood and spleen. The clone 7B2 reacts with FCRL6 in Western blotting, FACS, and immunohistochemistry. In the T cell lineage, FCRL6 functions in antigen-experienced cells. Mitogenic stimulation of PB leukocytes in vitro resulted in an abrogation of the FCRL6 gene expression. We found a significant decrease in the FCRL6 gene expression in peripheral T cells of patients with certain autoimmune and blood diseases, and its upregulation at the late stages of HIV infection. Study of the FCRL6 association with signaling molecules showed its ability to recruit SHP-1, SHP-2, SHIP-1, and SHIP-2 phosphatases, and also adaptor protein Grb2 through phosphorylated cytoplasmic tyrosines. The current results demonstrate inhibitory potential of FCRL6 and suggest its possible involvement in modulation of CTL effector functions in various immune disorders.


Subject(s)
Carrier Proteins/immunology , Gene Expression Regulation , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Alternative Splicing , Amino Acid Sequence , Autoimmune Diseases/immunology , Blood Cells/cytology , CD8-Positive T-Lymphocytes/immunology , Hematologic Diseases/immunology , Humans , Intracellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/immunology , Molecular Sequence Data , RNA, Messenger/immunology , Sequence Alignment , Spleen/cytology
15.
J Immunol Methods ; 332(1-2): 73-81, 2008 Mar 20.
Article in English | MEDLINE | ID: mdl-18241881

ABSTRACT

We describe a simple and efficient method to detect antibodies against native epitopes following immunization with denatured proteins and peptides. With this method, soluble antigens genetically fused with placental alkaline phosphatase (AP) are used as probes to detect antibodies immobilized on nitrocellulose membranes. The AP-tagged proteins can be produced in sufficient amounts using transient transfection of eukaryotic cells with an appropriate cDNA fragment in a commercial AP-tag vector. The intrinsic thermo-stable phosphatase activity of a tagged protein obviates the need for its purification. To evaluate the method, three recently identified proteins of the FcR family, FCRLA, FCRL1, and FCRL4, were fused with AP and tested in a reaction with various polyclonal and monoclonal antibodies raised by immunization with bacterially produced antigens and peptide conjugates. All the three probes demonstrated high specificity in analysis of immune sera and hybridoma supernatants. Sensitivity of the assay varied depending on antibody tested and, in some cases, was in the subnanogram range. The results obtained show that AP-tagged proteins are useful tools for discrimination of antibodies against native epitopes when production of antigen in its native conformation is laborious and expensive.


Subject(s)
Alkaline Phosphatase/immunology , Epitopes/immunology , Receptors, Fc/immunology , Receptors, Immunologic/immunology , Alkaline Phosphatase/genetics , Animals , Antibodies, Monoclonal , Antibody Specificity , Antigen-Antibody Reactions , Blotting, Western , Cells, Cultured , Humans , Mice , Mice, Inbred BALB C , Receptors, Fc/genetics , Receptors, Immunologic/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...