Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cytometry A ; 91(2): 160-169, 2017 02.
Article in English | MEDLINE | ID: mdl-28160444

ABSTRACT

Imaging Mass Cytometry (IMC) is an expansion of mass cytometry, but rather than analyzing single cells in suspension, it uses laser ablation to generate plumes of particles that are carried to the mass cytometer by a stream of inert gas. Images reconstructed from tissue sections scanned by IMC have a resolution comparable to light microscopy, with the high content of mass cytometry enabled through the use of isotopically labeled probes and ICP-MS detection. Importantly, IMC can be performed on paraffin-embedded tissue sections, so can be applied to the retrospective analysis of patient cohorts whose outcome is known, and eventually to personalized medicine. Since the original description in 2014, IMC has evolved rapidly into a commercial instrument of unprecedented power for the analysis of histological sections. In this Review, we discuss the underlying principles of this new technology, and outline emerging applications of IMC in the analysis of normal and pathological tissues. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Image Cytometry/methods , Precision Medicine , Single-Cell Analysis/methods , Animals , Humans , Isotope Labeling/methods , Mice , Skin/ultrastructure
2.
Sci Rep ; 6: 36641, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27812005

ABSTRACT

Imaging mass cytometry was used for direct visualization of platinum localization in tissue sections from tumor and normal tissues of cisplatin-treated mice bearing pancreas cancer patient-derived xenografts. This recently-developed technology enabled simultaneous detection of multiple markers to define cell lineage, DNA damage response, cell proliferation and functional state, providing a highly detailed view of drug incorporation in tumor and normal tissues at the cellular level. A striking and unanticipated finding was the extensive binding of platinum to collagen fibers in both tumor and normal mouse tissues. Time course experiments indicated the slow release of stroma-bound platinum, although it is currently unclear if released platinum retains biological activity. Imaging mass cytometry offers a unique window into the in vivo effects of platinum compounds, and it is likely that this can be extended into the clinic in order to optimize the use of this important class of agent.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cisplatin/pharmacokinetics , Collagen/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/therapeutic use , Cisplatin/metabolism , Cisplatin/therapeutic use , Humans , Mice , Mice, SCID , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Tissue Distribution , Xenograft Model Antitumor Assays
3.
Anal Bioanal Chem ; 406(27): 6963-77, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25270864

ABSTRACT

The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of "multimodal spectroscopies."


Subject(s)
Mass Spectrometry/methods , Single-Cell Analysis
4.
Cancer Immunol Immunother ; 62(5): 955-65, 2013 May.
Article in English | MEDLINE | ID: mdl-23564178

ABSTRACT

Mass cytometry addresses the analytical challenges of polychromatic flow cytometry by using metal atoms as tags rather than fluorophores and atomic mass spectrometry as the detector rather than photon optics. The many available enriched stable isotopes of the transition elements can provide up to 100 distinguishable reporting tags, which can be measured simultaneously because of the essential independence of detection provided by the mass spectrometer. We discuss the adaptation of traditional inductively coupled plasma mass spectrometry to cytometry applications. We focus on the generation of cytometry-compatible data and on approaches to unsupervised multivariate clustering analysis. Finally, we provide a high-level review of some recent benchmark reports that highlight the potential for massively multi-parameter mass cytometry.


Subject(s)
Flow Cytometry/methods , Mass Spectrometry/methods , Cell Separation/methods , Cluster Analysis , Computational Biology/methods , Equipment Design , Fluorescent Dyes , Hematopoiesis , Humans , Immunologic Memory , Isotopes/chemistry , Leukocytes, Mononuclear/cytology , Metals , Molecular Weight , Multivariate Analysis , Neural Networks, Computer , T-Lymphocytes/cytology
5.
Anal Chem ; 81(16): 6813-22, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19601617

ABSTRACT

A novel instrument for real time analysis of individual biological cells or other microparticles is described. The instrument is based on inductively coupled plasma time-of-flight mass spectrometry and comprises a three-aperture plasma-vacuum interface, a dc quadrupole turning optics for decoupling ions from neutral components, an rf quadrupole ion guide discriminating against low-mass dominant plasma ions, a point-to-parallel focusing dc quadrupole doublet, an orthogonal acceleration reflectron analyzer, a discrete dynode fast ion detector, and an 8-bit 1 GHz digitizer. A high spectrum generation frequency of 76.8 kHz provides capability for collecting multiple spectra from each particle-induced transient ion cloud, typically of 200-300 micros duration. It is shown that the transients can be resolved and characterized individually at a peak frequency of 1100 particles per second. Design considerations and optimization data are presented. The figures of merit of the instrument are measured under standard inductively coupled plasma (ICP) operating conditions (<3% cerium oxide ratio). At mass resolution (full width at half-maximum) M/DeltaM > 900 for m/z = 159, the sensitivity with a standard sample introduction system of >1.4 x 10(8) ion counts per second per mg L(-1) of Tb and an abundance sensitivity of (6 x 10(-4))-(1.4 x 10(-3)) (trailing and leading masses, respectively) are shown. The mass range (m/z = 125-215) and abundance sensitivity are sufficient for elemental immunoassay with up to 60 distinct available elemental tags. When <15 elemental tags are used, a higher sensitivity mode at lower resolution (M/DeltaM > 500) can be used, which provides >2.4 x 10(8) cps per mg L(-1) of Tb, at (1.5 x 10(-3))-(5.0 x 10(-3)) abundance sensitivity. The real-time simultaneous detection of multiple isotopes from individual 1.8 microm polystyrene beads labeled with lanthanides is shown. A real time single cell 20 antigen expression assay of model cell lines and leukemia patient samples immuno-labeled with lanthanide-tagged antibodies is presented.


Subject(s)
Cell Separation/methods , Immunoassay/methods , Mass Spectrometry/methods , Antibodies/analysis , Antibodies/immunology , Antigens/analysis , Antigens/immunology , Cell Separation/instrumentation , Immunoassay/instrumentation , Limit of Detection , Mass Spectrometry/instrumentation
6.
J Anal At Spectrom ; 23(4): 463-469, 2008.
Article in English | MEDLINE | ID: mdl-19122859

ABSTRACT

Advances in the development of highly multiplexed bio-analytical assays with inductively coupled plasma mass spectrometry (ICP-MS) detection are discussed. Use of novel reagents specifically designed for immunological methods utilizing elemental analysis is presented. The major steps of method development, including selection of elements for tags, validation of tagged reagents, and examples of multiplexed assays, are considered in detail. The paper further describes experimental protocols for elemental tagging of antibodies, immunostaining of live and fixed human leukemia cells, and preparation of samples for ICP-MS analysis. Quantitative analysis of surface antigens on model cell lines using a cocktail of seven lanthanide labeled antibodies demonstrated high specificity and concordance with conventional immunophenotyping.

7.
J Am Soc Mass Spectrom ; 18(3): 578-87, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17188508

ABSTRACT

Resolution improvements in dipolar resonant excitation have been examined in a round-rod quadrupolar collision cell for values of the Mathieu characteristic exponent beta equal to n/p, where n and m are small integers (prime beta values) versus other beta values where n and p are not small (ordinary beta values). The trajectories of ions moving in the time-varying electric fields of a quadrupole with and without buffer-gas molecules were calculated to determine the relationship of prime and ordinary beta values to frequency resolution for resonant ion excitation and ejection. For prime beta values, the ion trajectory in the hyperbolic quadrupole field will be exactly periodic with a period of at most 4 pi p/Omega, where Omega is the angular frequency of the main drive radio-frequency (RF) potential. Ion trajectory simulations with prime beta versus ordinary beta values show that the motion of ions with prime beta values have simpler trajectories of shorter periods. Frequency response profiles (FRPs) for round-rod quadrupoles at zero pressure show that dipolar resonant excitations with prime beta values exhibit significantly narrower bandwidths than those with ordinary beta values. Simulations show that at 0.05 to 0.8 mTorr of nitrogen, it is possible to reduce the FRP bandwidth by 20% (measured at 50% depth).

8.
J Am Soc Mass Spectrom ; 17(2): 222-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16413203

ABSTRACT

A high-performance orthogonal time-of flight (TOF) mass spectrometer, in combination with the matrix assisted laser desorption/ionization (MALDI) source operating at elevated pressure ( approximately 1 torr in N(2)), was used to perform MALDI-TOF analyses of pentacene and some of its derivatives with and without an added matrix. These molecules are among the most interesting semiconductor materials for organic thin film transistor applications (OTFT). The observation of ion-molecule reactions between "cold" analyte ions and neutral analyte molecules in the gas phase has provided some insight into the mechanism of pentacene cluster formation and its functionalized derivatives. Furthermore, some of the matrices employed to assist the desorption/ionization process of these compounds were observed to influence the outcome via ion-molecule reactions of analyte ions and matrix molecules in the gas phase. The stability and reactivity of the compounds and their clusters in the MALDI plume during gas-phase expansion were evaluated; possible structures of the resulting clusters are discussed. The MALDI-TOF technique was also helpful in distinguishing between two isomeric forms of bis-[(triisopropylsilyl)-ethynyl]-pentacene.

9.
Transl Oncogenomics ; 1: 1-9, 2006.
Article in English | MEDLINE | ID: mdl-23662035

ABSTRACT

Conventional gene expression profiling relies on using fluorescent detection of hybridized probes. Physical characteristics of fluorophores impose limitations on achieving a highly multiplex gene analysis of single cells. Our work demonstrates the feasibility of using metal-tagged in situ hybridization for mRNA detection by inductively coupled plasma mass spectrometry (ICP-MS). ICP-MS as an analytical detector has a number of unique and relevant properties: 1) metals and their stable isotopes generate non-overlapping distinct signals that can be detected simultaneously; 2) these signals can be measured over a wide dynamic range; 3) ICP-MS is quantitative and very sensitive. We used commercial antibodies conjugated to europium (Eu) and gold together with biotinylated oligonucleotide probes reacted with terbium-labeled streptavidin to demonstrate simultaneous mRNA and protein detection by ICP-MS in leukemia cells.

10.
J Am Soc Mass Spectrom ; 16(6): 957-66, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15907710

ABSTRACT

A high-pressure 20-segment quadrupole collision cell (HP-SQCC), which replaces a collision cell in a modified triple-quadrupole mass spectrometer is investigated in this work as an ion-molecule reactor with an inherent heat source. The highest working pressure achievable is 20 mTorr. The 20 quadrupole segments permit superimposition of linear axial electric field over the conventional quadrupole field in the radial direction. The axial and radial fields are employed to control ion temperature. Heat is transferred to the reactants through ion frictional heating. The HP-SQCC utilizes a combination of several physicochemical phenomena and an attempt is made to examine a range of ion-molecule reactions. Due to a sufficiently large number of reactive collisions, the reactor is used to promote sequential exothermic ion-molecule reactions. To characterize the performance of the HP-SQCC, the various ion-molecule reactions between the fragment ions of ferrocene (Cp(2)Fe), cobaltocene (Cp(2)Co) and nitrogen, oxygen, water and carbon monoxide are investigated.

11.
Anal Chem ; 76(11): 3042-8, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15167781

ABSTRACT

Determination of the concentration and distribution of the Pu and Am isotopes is hindered by the isobaric overlaps between the elements themselves and U, generally requiring time-consuming chemical separation of the elements. A method is described in which chemical resolution of the elemental ions is obtained through ion-molecule reactions in a reaction cell of an ICPMS instrument. The reactions of "natural" U(+), (242)Pu(+), and (243)Am(+) with ethylene, carbon dioxide, and nitric oxide are reported. Since the net sensitivities to the isotopes of an element are similar, chemical resolution is inferred when one isobaric element reacts rapidly with a given gas and the isobar (or in this instance surrogate isotope) is unreactive or slowly reactive. Chemical resolution of the m/z 238 isotopes of U and Pu can be obtained using ethylene as a reaction gas, but little improvement in the resolution of the m/z 239 isobars is obtained. However, high efficiency of reaction of U(+) and UH(+) with CO(2), and nonreaction of Pu(+), allows the sub-ppt determination of (239)Pu, (240)Pu, and (242)Pu (single ppt for (238)Pu) in the presence of 7 orders of magnitude excess U matrix without prior chemical separation. Similarly, oxidation of Pu(+) by NO, and nonreaction of Am(+), permit chemical resolution of the isobars of Pu and Am over 2-3 orders of magnitude relative concentration. The method provides the potential for analysis of the actinides with reduced sample matrix separation.

12.
J Am Soc Mass Spectrom ; 14(11): 1236-46, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14597113

ABSTRACT

An atmosphere to vacuum interface was designed to exploit the different mobility and momentum characteristics of ions, and charged and neutral particles in electrospray ionization-mass spectrometry. The purpose of this device is to transmit with high efficiency the ions created at atmospheric pressure into the mass analyzer and to deflect the large charged and neutral particles prior to entrance into the vacuum system, thereby maintaining system cleanliness and stability. This interface is particularly suitable for low flow rate electrospray ionization-mass spectrometry where the close proximity of the electrospray emitters to the vacuum entrance, and near total consumption of the entire spray, leads to the production of large quantities of non-desolvated droplets and large charged and neutral particles. The improvement involves the application of potential gradients to a particle discriminator space located between the gas restricting ion entrance orifice of the mass spectrometer and the exit of a heated laminar flow chamber to divert large particles from the gas conductance limiting orifice. A counter-current flow of drying gas is used to deflect neutral particles and solvent vapor. Two stages of desolvation are achieved with the combined effects of the curtain gas and heated laminar flow chamber. This enhances the efficiency of desolvation and ion production, and stabilizes the resulting ion current under a wide variety of solvent compositions. In addition, this system eliminates the problems associated with the boiling of solution in nanospray tips when operated in close proximity to a heated mass spectrometer inlet. The particle discriminator interface gives approximately a 2-fold improvement in ion count rates, and a 3-fold improvement in stability (as measured by the signal relative standard deviation).


Subject(s)
Spectrometry, Mass, Electrospray Ionization/instrumentation , Algorithms , Indicators and Reagents , Myoglobin/chemistry , Peptides/chemistry , Reference Standards
13.
J Am Soc Mass Spectrom ; 14(8): 818-24, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12892906

ABSTRACT

Implementation of the analytical method of the solution of the Mathieu equation in conjunction with the algebraic presentation of Mathieu functions is discussed in this work. This approach is used for the analytical expression of fundamental properties of the quadrupole field such as ion trajectory stability and transmission. Extensive comparison with the matrix method is presented with demonstration of the fundamental advantages of the analytical method. However, contrary to the matrix method, the analytical method is limited to the cos trapping waveforms.


Subject(s)
Energy Transfer , Ions , Mass Spectrometry/instrumentation , Mathematics , Models, Theoretical
14.
J Am Soc Mass Spectrom ; 13(10): 1176-85, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12387323

ABSTRACT

A novel reaction cell for ICP-MS with an electric field provided inside the quadrupole along its axis is described. The field is implemented via a DC bias applied to additional auxiliary electrodes inserted between the rods of the quadrupole. The field reduces the settling time of the pressurized quadrupole when its mass bandpass is dynamically tuned. It also improves the transmission of analyte ions. It is shown that for the pressurized cell with the field activated, the recovery time for a change in quadrupole operating parameters is reduced to <4 ms, which allows fast tuning of the mass bandpass in concert with and at the speed of the analyzing quadrupole. When the cell is operated with ammonia, the field reduces ion-ammonia cluster formation, further enhancing the transmission of atomic ions that have a high cluster formation rate. Ni x (NH3)n+ cluster formation in a cell operated with a wide bandpass (i.e., Ni+ precursors are stable in the cell) is shown to be dependent on the axial field strength. Clusters at n = 2-4 can be suppressed by 9, 1200, and >610 times, respectively. The use of a retarding axial field for in-situ energy discrimination against cluster and polyatomic ions is shown. When the cell is pressurized with O2 for suppression of 129Xe+, the formation of 127IH2+ by reactions with gas impurities limits the detection of 129I to isotopic abundance of approximately 10(-6). In-cell energy discrimination against 127IH2+ utilizing a retarding axial field is shown to reduce the abundance of the background at m/z = 129 to ca. 3 x 10(-8) of the 127I+ signal. In-cell energy discrimination against 127IH2+ is shown to cause less I+ loss than a post-cell potential energy barrier for the same degree of 127IH2+ suppression.

15.
Anal Chem ; 74(7): 1497-502, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-12033236

ABSTRACT

A method of detection of ultratrace phosphorus and sulfur that uses reaction with O2 in a dynamic reaction cell (DRC) to oxidize S+ and P+ to allow their detection as SO+ and PO+ is described. The method reduces the effect of polyatomic isobaric interferences at m/z = 31 and 32 by detecting P+ and S+ as the product oxide ions that are less interfered. Use of an axial field in the DRC improves transmission of the product oxide ions 4-6 times. With no axial field, detection limits (3sigma, 5-s integration) of 0.20 and 0.52 ng/mL, with background equivalent concentrations of 0.53 and 4.8 ng/mL, respectively, are achieved. At an optimum axial field potential (200 V), the detection limits are 0.06 ng/mL for P and 0.2 ng/mL for S, respectively. The method is used for determining the degree of phosphorylation of beta-casein, and regular and dephosphorylated alpha-caseins at 10-1000 fmol/microL concentration, with 5-10% v/v organic sample matrix (acetonitrile, formic acid, ammonium bicarbonate). The measured degree of phosphorylation for beta-casein (4.9 phosphorus atoms/molecule) and regular alpha-casein (8.8 phoshorus atoms/molecule) are in good agreement with the structural data for the proteins. The P/S ratio for regular alpha-casein (1.58) is in good agreement with the ratio of the number of phosphorylation sites to the number of sulfur-containing amino acid residues cysteine and methionine. The P/S ratio for commercially available dephosphorylated alpha-casein is measured at 0.41 (approximately 26% residual phosphate).


Subject(s)
Mass Spectrometry/methods , Phosphorus/analysis , Sulfur/analysis , Caseins/chemistry , Oxygen/chemistry , Phosphoproteins/analysis , Phosphorylation
16.
Anal Chem ; 74(7): 1629-36, 2002 Apr 01.
Article in English | MEDLINE | ID: mdl-12033255

ABSTRACT

We report a set of novel immunoassays in which proteins of interest can be detected using specific element-tagged antibodies. These immunoassays are directly coupled with an inductively coupled plasma mass spectrometer (ICPMS) to quantify the elemental (in this work, metal) component of the reacted tagged antibodies. It is demonstrated that these methods can detect levels of target proteins as low as 0.1-0.5 ng/mL and yield a linear response to protein concentration over 3 orders of magnitude.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Animals , Antibodies , Humans , Immunoassay/methods , Immunoassay/standards , Mass Spectrometry/standards , Proteins/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...