Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(11)2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35684572

ABSTRACT

The problem of graphene protection of Ge surfaces against oxidation is investigated. Raman, X-Ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements of graphene epitaxially grown on Ge(001)/Si(001) substrates are presented. It is shown that the penetration of water vapor through graphene defects on Gr/Ge(001)/Si(001) samples leads to the oxidation of germanium, forming GeO2. The presence of trigonal GeO2 under graphene was identified by Raman and XRD measurements. The oxidation of Ge leads to the formation of blisters under the graphene layer. It is suggested that oxidation of Ge is connected with the dissociation of water molecules and penetration of OH molecules or O to the Ge surface. It has also been found that the formation of blisters of GeO2 leads to a dramatic increase in the intensity of the graphene Raman spectrum. The increase in the Raman signal intensity is most likely due to the screening of graphene by GeO2 from the Ge(001) surface.

2.
Phys Chem Chem Phys ; 21(37): 20641-20646, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31506649

ABSTRACT

A method of growing highly oriented MoS2 is presented. First, a Mo film is deposited on a graphene/SiC(0001) substrate and the subsequent annealing of it at 750 °C leads to intercalation of Mo underneath the graphene layer, which is confirmed by secondary ion mass spectrometry (SIMS) measurements. Formation of highly oriented MoS2 layers is then achieved by sulfurization of the graphene/Mo/SiC system using H2S gas. X-ray diffraction reveals that the MoS2 layers are highly oriented and parallel to the underlying SiC substrate surface. Further SIMS experiments reveal that the intercalation process occurs via the atomic step edges of SiC and Mo and S atoms gradually diffuse along SiC atomic terraces leading to the creation of the MoS2 layer. This observation can be explained by a mechanism of highly oriented growth of MoS2: nucleation of the crystalline MoS2 phase occurs underneath the graphene planes covering the flat parts of SiC steps and Mo and S atoms create crystallization fronts moving along terraces.

3.
Nat Commun ; 8: 15306, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28480884

ABSTRACT

Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes. We show, by different experimental techniques and theoretical methods, that the excess of charge at carbon dangling-bonds formed on single-atomic vacancies at the graphene surface induces enhanced reactivity towards a selective oxidation of the amino group and subsequent integration of the nitrogen within the graphene network. Remarkably, functionalized surfaces retain the electronic properties of pristine graphene. This study opens the door for development of graphene-based interfaces, as nano-bio-hybrid composites, fabrication of dielectrics, plasmonics or spintronics.

4.
Sci Rep ; 6: 21773, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26899732

ABSTRACT

The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...