Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36500769

ABSTRACT

We fabricated memristive devices using focused electron beam-induced deposition (FEBID) as a direct-writing technique employing a Pt/TiO2/Pt sandwich layer device configuration. Pinching in the measured current-voltage characteristics (i-v), the characteristic fingerprint of memristive behavior was clearly observed. The temperature dependence was measured for both high and low resistive states in the range from 290 K down to about 2 K, showing a stretched exponential behavior characteristic of Mott-type variable-range hopping. From this observation, a valence change mechanism of the charge transport inside the TiO2 layer can be deduced.

2.
Sensors (Basel) ; 10(11): 9847-56, 2010.
Article in English | MEDLINE | ID: mdl-22163443

ABSTRACT

This paper introduces a new methodology for the fabrication of strain-sensor elements for MEMS and NEMS applications based on the tunneling effect in nano-granular metals. The strain-sensor elements are prepared by the maskless lithography technique of focused electron-beam-induced deposition (FEBID) employing the precursor trimethylmethylcyclopentadienyl platinum [MeCpPt(Me)(3)]. We use a cantilever-based deflection technique to determine the sensitivity (gauge factor) of the sensor element. We find that its sensitivity depends on the electrical conductivity and can be continuously tuned, either by the thickness of the deposit or by electron-beam irradiation leading to a distinct maximum in the sensitivity. This maximum finds a theoretical rationale in recent advances in the understanding of electronic charge transport in nano-granular metals.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology/methods , Micro-Electrical-Mechanical Systems/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...