Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ann Agric Environ Med ; 30(4): 763-772, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38153083

ABSTRACT

INTRODUCTION AND OBJECTIVE: Mobile phones and Wi-Fi are the most commonly used forms of telecommunications. Initiated with the first generation, the mobile telephony is currently in its fifth generation without being screened extensively for any biological effects that it may have on humans or on animals. Some studies indicate that high frequency electromagnetic radiation emitted by mobile phone and Wi-Fi connection can have a negative effect upon human health, and can cause cancer, including brain tumour. OBJECTIVE: The aim of the study was to investigate the influence of 2.4 GHz radiofrequency electromagnetic field (RF-EMF) on the proliferation and morphology of normal (human embryonic kidney cell line Hek-293) and cancer cells (glioblastoma cell line U-118 MG). MATERIAL AND METHODS: The cell cultures were incubated in RF-EMF at the frequency of 2.4 GHz, with or without dielectric screen, for 24, 48 and 72h. In order to analyse the influence of the electromagnetic field on cell lines, Cytotoxicity test Cell Counting Kit-8 was performed. To protect cells against emission of the electromagnetic field, a dielectric screen was used. RESULTS: It was found that 2.4 GHz RF electromagnetic field exposure caused a significant decrease in viability of U-118 MG and Hek-293 cells. The impact of the electromagnetic field was strongest in the case of cancer cells, and the decrease in their survival was much greater compared to the healthy (normal) cells of the Hek-293 line. CONCLUSIONS: Results of the study indicate that using a radio frequency electromagnetic field (2.4 GHz) has a clearly negative effect on the metabolic activity of glioblastoma cells. RF-EMF has much less impact on reducing the viability of normal cells (Hek -293) than cancer cells.


Subject(s)
Electromagnetic Fields , Glioblastoma , Animals , Humans , Electromagnetic Fields/adverse effects , Environmental Exposure/analysis , HEK293 Cells , Radio Waves/adverse effects
2.
Cancers (Basel) ; 14(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36551708

ABSTRACT

Glioblastoma (GBM) is the most common malignant neoplasm in adults among all CNS gliomas, with the 5-year survival rate being as low as 5%. Among nanocarriers, liposomal nanoformulations are considered as a promising tool for precise drug delivery. The herein presented study demonstrates the possibility of encapsulating four selected natural compounds (curcumin, bisdemethoxycurcumin, acteoside, and orientin) and their mixtures in cationic liposomal nanoformulation composed of two lipid types (DOTAP:POPC). In order to determine the physicochemical properties of the new drug carriers, specific measurements, including particle size, Zeta Potential, and PDI index, were applied. In addition, NMR and EPR studies were carried out for a more in-depth characterization of nanoparticles. Within biological research, the prepared formulations were evaluated on T98G and U-138 MG glioblastoma cell lines in vitro, as well as on a non-cancerous human lung fibroblast cell line (MRC-5) using the MTT test to determine their potential as anticancer agents. The highest activity was exhibited by liposome-entrapped acteoside towards the T98G cell line with IC50 equal 2.9 ± 0.9 µM after 24 hours of incubation. Noteworthy, curcumin and orientin mixture in liposomal formulation exhibited a synergistic effect against GBM. Moreover, the impact on the expression of apoptosis-associated proteins (p53 and Caspase-3) of acteoside as well as curcumin and orientin mixture, as the most potent agents, was assessed, showing nearly 40% increase as compared to control U-138 MG and T98G cells. It should be emphasized that a new and alternative method of extrusion of the studied liposomes was developed.

3.
Pharmaceutics ; 14(7)2022 Jun 24.
Article in English | MEDLINE | ID: mdl-35890227

ABSTRACT

Diclofenac (DC) [2-(2,6-Dichloroanilino)phenyl]acetic acid,) and aceclofenac (AC) 2-[2-[2-[(2,6-dichlorophenyl)amino]phenyl]acetyl]oxyacetic acid in substantia were subjected to ionizing radiation in the form of a beam of high-energy electrons from an accelerator in a standard sterilization dose of 25 kGy and higher radiation doses (50-400 kGy). We characterized non-irradiated and irradiated samples of DC and AC by using the following methods: organoleptic analysis (color, form), spectroscopic (IR, NMR, EPR), chromatographic (HPLC), and others (microscopic analysis, capillary melting point measurement, differential scanning calorimetry (DSC)). It was found that a absorbed dose of 50 kGy causes a change in the color of AC and DC from white to cream-like, which deepens with increasing radiation dose. No significant changes in the FT-IR spectra were observed, while no additional peaks were observed in the chromatograms, indicating emerging radio-degradation products (25 kGy). The melting point determined by the capillary method was 153.0 °C for AC and 291.0 °C for DC. After irradiation with the dose of 25 kGy for AC, it did not change, for DC it decreased by 0.5 °C, while for the dose of 400 kGy it was 151.0 °C and 286.0 °C for AC and DC, respectively. Both NSAIDs exhibit high radiation stability for typical sterilization doses of 25-50 kGy and are likely to be sterilized with radiation at a dose of 25 kGy. The influence of irradiation on changes in molecular dynamics and structure has been observed by 1H-NMR and EPR studies. This study aimed to determine the radiation stability of DC and AC by spectrophotometric, thermal and chromatographic methods. A standard dose of irradiation (25 kGy) was used to confirm the possibility of using this dose to obtain a sterile form of both NSAIDs. Higher doses of radiation (50-400 kGy) have been performed to explain the changes in DC and AC after sterilization.

4.
Ann Agric Environ Med ; 28(1): 163-171, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33775083

ABSTRACT

INTRODUCTION: Currently, mobile phones and Wi-Fi are the most commonly used forms of telecommunication. The popularity of mobile telecommunications has made it necessary to investigate the problem more comprehensively and cautiously assess the possible risks, because never before in history has such a substantial proportion of the population been exposed to microwaves at comparably high levels. Some studies indicate that the high frequency electromagnetic radiation emitted by mobile phone and Wi-Fi connections can have a negative effect on human health, and can cause cancer. OBJECTIVE: The aim of the study was to investigate the influence of the radiofrquency electromagnetic field (RF-EMF) on the metaboloc activity and morphology of normal human cells (fibroblasts) and cancer cells (prostate cancer cells). MATERIAL AND METHODS: The cell cultures (human fibroblasts and prostate cancer cells) were exposed to RF-EMF at the frequency of 2.5 GHz for 24, 48 and 72h. To quantify changes in cell viability, the Cell Counting Kit - 8 was used. RESULTS: It was found that the RF electromagnetic field exposure caused a significant decrease in the viability of fibroblasts, and a significant increase in cancer cells. Morphological analysis did not show significant changes in both cell lines after exposure to RF-EMF. CONCLUSIONS: On the basis of the obtained results, the hypothesis can be formulated that a high frequency electromagnetic field can have harmful effects on human cells.


Subject(s)
Cell Line, Tumor/radiation effects , Electromagnetic Fields/adverse effects , Fibroblasts/radiation effects , Radio Waves/adverse effects , Cell Line , Cell Phone , Cell Survival/radiation effects , Environmental Exposure/adverse effects , Fibroblasts/cytology , Humans
5.
HardwareX ; 9: e00194, 2021 Apr.
Article in English | MEDLINE | ID: mdl-35492061

ABSTRACT

Syringe pumps are routinely used in biomedical imaging laboratories for delivering contrast agents and either infusing or injecting a precise amount of liquids. Commercial syringe pumps that are developed by specialized companies are expensive and only have standard functions, which often do not meet the requirements of individual experiments. In this paper, we demonstrate an open-source single syringe pump with the possibility of adapting to the needs of a researcher. The device that was designed, is controlled by an Arduino Leonardo, along with the stepper motor driver. For sending commands and receiving the current plunger position, a C# software was developed with serial communication via USB. Additionally, the 3D models were made in a universal way, which allows for the use of any syringe size. An example of the application of the syringe pump for biomedical applications was demonstrated using electron resonance imaging (ERI). The single syringe pump tests were demonstrated by simulating the filling of a particular volume inside the resonator. This example reflects the clearance process after an intravascular (I.V) drug administration in the murine model. The experiments were performed on an ERI TM 600 tomograph. The results confirmed that the designed syringe pump allowed for controlling the infusion speed and injected volume. Moreover, we present a user-friendly and open-source graphical interface that is a low-cost alternative for commercial devices.

6.
Materials (Basel) ; 13(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859082

ABSTRACT

Bio-based composites made of poly(l-lactic acid) (PLLA) and pine wood were prepared by melt extrusion. The composites were compatibilized by impregnation of wood with γ-aminopropyltriethoxysilane (APE). Comparison with non-compatibilized formulation revealed that APE is an efficient compatibilizer for PLLA/wood composites. Pine wood particles dispersed within PLLA act as nucleating agents able to start the growth of PLLA crystals, resulting in a faster crystallization rate and increased crystal fraction. Moreover, the composites have a slightly lower thermal stability compared to PLLA, proportional to filler content, due to the lower thermal stability of wood. Molecular dynamics was investigated using the solid-state 1H NMR technique, which revealed restrictions in the mobility of polymer chains upon the addition of wood, as well as enhanced interfacial adhesion between the filler and matrix in the composites compatibilized with APE. The enhanced interfacial adhesion in silane-treated composites was also proved by scanning electron microscopy and resulted in slightly improved deformability and impact resistance of the composites.

7.
Chemphyschem ; 21(13): 1402-1407, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32400916

ABSTRACT

Recent efforts in designing new 3H-naphthopyran derivatives have been focused on efficient coloration process with a short fading time of the colored transoid-cis TC isomer. It is desirable to avoid photoisomerization of TC leading to transoid-trans TT isomers in the photoreaction. Long lifetime of TT can hamper fast applications such as dynamic holographic materials and molecular actuators, the residual color is one of the serious issues for photochromic lenses. Herein we characterize the photophysical and photochemical channels of TC excited state deactivation competing with the unwanted TC→TT isomerization process. Transient absorption spectroscopy reveals a very short lifetime of the singlet excited TC (≈0.8 ps) and its deactivation channels as S1 →S0 internal conversion (major), intersystem crossing S1 →T1 , pyran ring formation, photoenolization and TC→TT isomerization. Computations support the S1 →S0 and T1 →S0 channels as responsible for photostabilization of the TC form.

8.
Free Radic Biol Med ; 152: 271-279, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32222471

ABSTRACT

This work is the first report when multiharmonic analysis (MHA) was applied for electron paramagnetic resonance imaging (EPRI) for in vivo applications. Phantom studies were performed for established methodology, and in vivo imaging was conduct as a proof-of-concept. Phantom studies showed at least six times improvement of the signal - to - noise (S/N) ratio. Application MHA for 3D EPR in vivo imaging provides images of spin probe distribution in mouse head. The EPRI, in combination with nitroxide and trityl spin probe, was performed to obtained 3D EPR in vivo images using MHA. For both used spin probes, MHA provided images with better S/N ratio, especially in the case of nitroxide, where projections obtained using conventional CW did not allow for reconstructing reliable data. Trityl radical exhibited high resolution and quality of obtained images after MHA. The MHA methodology allows the selection of a second modulation amplitude even 40 times higher than the natural EPR linewidth of the spin probe without line shape distortion, which highly improves the sensitivity of the acquired signal and allowing for imaging mice regardless of their size in a routine animal experiment.


Subject(s)
Imaging, Three-Dimensional , Animals , Electron Spin Resonance Spectroscopy , Mice , Signal-To-Noise Ratio
9.
Appl Opt ; 58(21): 5883-5891, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31503895

ABSTRACT

The application of a thermal lens, formed by a laser beam, in the imaging of objects lying in three different planes is reported for the first time, to the best of our knowledge. The objects' planes are separated by a distance surpassing the depth-of-field of the imaging setup. It is the local formation of two thermal lenses near the intermediate image plane in a thermo-optical material that allows for the observation of two additional objects.

10.
Appl Opt ; 58(21): 5839-5847, 2019 Jul 20.
Article in English | MEDLINE | ID: mdl-31503896

ABSTRACT

The application of a thermal lens, formed by a laser beam, in the imaging of objects lying in three different planes is reported for the first time, to the best of our knowledge. The objects' planes are separated by a distance surpassing the depth-of-field of the imaging setup. It is the local formation of two thermal lenses near the intermediate image plane in a thermo-optical material that allows for the observation of two additional objects.

11.
ACS Appl Mater Interfaces ; 10(9): 7777-7787, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29417811

ABSTRACT

Ferritins are proteins, which serve as a storage and transportation capsule for iron inside living organisms. Continuously charging the proteins with iron and releasing it from the ferritin is necessary to assure proper management of these important ions within the organism. On the other hand, synthetic ferritins have great potential for biomedical and technological applications. In this work, the behavior of ferritin during the processes of iron loading and release was examined using multiplicity of the experimental technique. The quality of the protein's shell was monitored using circular dichroism, whereas the average size and its distribution were estimated from dynamic light scattering and transmission electron microscopy images, respectively. Because of the magnetic behavior of the iron mineral, a number of magnetooptical methods were used to gain information on the iron core of the ferritin. Faraday rotation and magnetic linear birefringence studies provide evidence that the iron loading and the iron-release processes are not symmetrical. The spatial organization of the mineral within the protein's core changes depending on whether the iron was incorporated into or removed from the ferritin's shell. Magnetic optical rotatory dispersion spectra exclude the contribution of the Fe(II)-composed mineral, whereas joined magnetooptical and nuclear magnetic resonance results indicate that no mineral with high magnetization appear at any stage of the loading/release process. These findings suggest that the iron core of loaded/released ferritin consists of single-phase, that is, ferrihydrite. The presented results demonstrate the usefulness of emerging magnetooptical methods in biomedical research and applications.


Subject(s)
Magnetics , Ferritins , Iron , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy
12.
Magn Reson Chem ; 54(2): 136-42, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26364566

ABSTRACT

A study concerning the image quality in electron paramagnetic resonance imaging in two-dimensional spatial experiments is presented. The aim of the measurements was to improve the signal-to-noise ratio (SNR) of the projections and the reconstructed image by applying modulation amplitude higher than the radical electron paramagnetic resonance linewidth. Data were gathered by applying four constant modulation amplitudes, where one was below 1/3 (Amod = 0.04 mT) of the radical linewidth (ΔBpp = 0.14 mT). Three other modulation amplitude values were used in this experiment, leading to undermodulated (Amod < 1/3 ΔBpp), partially overmodulated (Amod ~ 1/3 ΔBpp) and fully overmodulated (Amod > > 1/3 ΔBpp) projections. The advantages of an applied overmodulation condition were demonstrated in the study performed on a phantom containing four shapes of 1.25 mM water solution of 2, 2, 6, 6-tetramethyl-1-piperidinyloxyl. It was shown that even when the overmodulated reference spectrum was used in the deconvolution procedure, as well as the projection itself, the phantom shapes reconstructed as images directly correspond to those obtained in undermodulation conditions. It was shown that the best SNR of the reconstructed images is expected for the modulation amplitude close to 1/3 of the projection linewidth, which is defined as the distance from the first maximum to the last minimum of the gradient-broadened spectrum. For higher modulation amplitude, the SNR of the reconstructed image is decreased, even if the SNR of the measured projection is increased.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Copper Sulfate/chemistry , Cyclic N-Oxides/chemistry , Image Enhancement/methods , Polyesters/chemistry , Signal-To-Noise Ratio , Water
13.
Solid State Nucl Magn Reson ; 71: 73-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26272112

ABSTRACT

Methodology for the study of dynamics in heteronuclear systems in the laboratory frame was described in the previous paper [1]. Now the methodology for the study of molecular dynamics in the solid state heteronuclear systems in the rotating frame is presented. The solid state NMR off-resonance experiments were carried out on a homemade pulse spectrometer operating at the frequency of 30.2 MHz for protons. This spectrometer includes a specially designed probe which contains two independently tuned and electrically isolated coils installed in the coaxial position on the dewar. A unique probe design allows working at three slightly differing frequencies off and on resonance for protons and at the frequency of 28.411 MHz for fluorine nuclei with complete absence of their electrical interference. The probe allows simultaneously creating rf magnetic fields at off-resonance frequencies within the range of 30.2-30.6 MHz and at the frequency of 28.411 MHz. Presented heteronuclear cross-relaxation off-resonance experiments in the rotating frame provide information about molecular dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL
...