Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Breed ; 41(9): 54, 2021 Sep.
Article in English | MEDLINE | ID: mdl-37309400

ABSTRACT

The deployment of combinations of resistance genes in future wheat cultivars can save yield losses caused by the stripe rust pathogen (Puccinia striiformis f. sp. tritici; Pst). This relies on the availability and identification of genetically diverse sources of resistance. A Tunisian landrace Aus26670 displayed high level of stripe rust resistance against Australian Pst pathotypes. This landrace was crossed with a susceptible line Avocet 'S' (AvS) to generate 123 F7 recombinant inbred lines (RILs). The Aus26670/AvS RIL population was evaluated against three Pst pathotypes individually in greenhouse and against mixture of Pst pathotypes under field conditions for three consecutive years. Genetic analysis of the seedling stripe rust response variation data indicated the presence of an all-stage resistance (ASR) gene, and it was named YrAW12. This gene is effective against Australian Pst pathotypes 110 E143A + and 134 E16A + Yr17 + Yr27 + and is ineffective against the pathotype 239 E237A-Yr17 + Yr33 + . The RIL population was genotyped using the targeted genotyping-by-sequencing (tGBS) assay. YrAW12 was mapped in the 754.9-763.9 Mb region of the physical map of Chinese Spring and was concluded to be previously identified stripe rust resistance gene Yr72. QTL analysis suggested the involvement of four genomic regions which were named: QYr.sun-1BL/Yr29, QYr.sun-5AL, QYr.sun-5BL and QYr.sun-6DS, in controlling stripe rust resistance in Aus26670. Comparison of genomic regions detected in this study with previously reported QTL indicated the uniqueness of QYr.sun-5AL (654.5 Mb) and QYr.sun-6DS (1.4 Mb). Detailed mapping of these genomic regions will lead to permanent designation of these loci. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01248-7.

2.
Front Plant Sci ; 11: 567147, 2020.
Article in English | MEDLINE | ID: mdl-33013989

ABSTRACT

Wheat is an important source of dietary protein and calories for the majority of the world's population. It is one of the largest grown cereal in the world occupying over 215 M ha. Wheat production globally is challenged by biotic stresses such as pests and diseases. Of the 50 diseases of wheat that are of economic importance, the three rust diseases are the most ubiquitous causing significant yield losses in the majority of wheat production environments. Under severe epidemics they can lead to food insecurity threats amid the continuous evolution of new races of the pathogens, shifts in population dynamics and their virulence patterns, thereby rendering several effective resistance genes deployed in wheat breeding programs vulnerable. This emphasizes the need to identify, characterize, and deploy effective rust-resistant genes from diverse sources into pre-breeding lines and future wheat varieties. The use of genetic resistance has been marked as eco-friendly and to curb the further evolution of rust pathogens. Deployment of multiple rust resistance genes including major and minor genes in wheat lines could enhance the durability of resistance thereby reducing pathogen evolution. Advances in next-generation sequencing (NGS) platforms and associated bioinformatics tools have revolutionized wheat genomics. The sequence alignment of the wheat genome is the most important landmark which will enable genomics to identify marker-trait associations, candidate genes and enhanced breeding values in genomic selection (GS) studies. High throughput genotyping platforms have demonstrated their role in the estimation of genetic diversity, construction of the high-density genetic maps, dissecting polygenic traits, and better understanding their interactions through GWAS (genome-wide association studies) and QTL mapping, and isolation of R genes. Application of breeder's friendly KASP assays in the wheat breeding program has expedited the identification and pyramiding of rust resistance alleles/genes in elite lines. The present review covers the evolutionary trends of the rust pathogen and contemporary wheat varieties, and how these research strategies galvanized to control the wheat killer genus Puccinia. It will also highlight the outcome and research impact of cost-effective NGS technologies and cloning of rust resistance genes amid the public availability of common and tetraploid wheat reference genomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...