Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Bot ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39081217

ABSTRACT

BACKGROUND AND AIMS: Diversity in pappus shapes and size in Asteraceae suggests an adaptive response to dispersion challenges adjusting diaspore to optimal phenotypic configurations. Here, by analysing the relationship among pappus-cypsela size relationships, flight performance and pappus types in an evolutionary context, we evaluate the role of natural selection acting on the evolution of diaspore configuration at a macro-ecological scale in the daisy family. METHODS: To link pappus-cypsela size relationships with flight performance we collected published data on these traits from 82 species. This allowed us to translate morphometric traits in flight performance for 150 species represented in a fully resolved backbone phylogeny of the daisy family. Through ancestral reconstructions and evolutionary model selection we assessed whether flight performance was associated with and constrained by different pappus types. Additionally, we evaluated, through phylogenetic regressions, whether species with different pappus types exhibited evolutionary allometric pappus-cypsela size relationships. RESULTS: The setose pappus type had the highest flight performances and represented the most probable ancestral state in the family. Stepwise changes in pappus types independently led from setose to multiple instances of pappus loss with associated reduction in flight performance. Flight performance evolution was best modelled as constrained by five adaptive regimes represented by specific pappus types which correspond with specific optimal diaspore configurations that are distinct in pappus-cypsela allometric relationships. CONCLUSIONS: Evolutionary modelling suggests natural selection as the main factor of diaspore configuration changes which proceeded towards five optima, often overcoming constraints imposed by allometric relationships and favouring evolution in certain directions. With the perspective that natural selection is the main process driving the observed patterns, various biotic and abiotic are suggested as principal drivers of transitions in diaspore configurations along space and time in the daisy family history. Results also allow discussion of evolutionary changes in a historical context.

2.
Am J Bot ; 111(7): e16377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010307

ABSTRACT

PREMISE: Evolution of cross-pollination efficiency depends on the genetic variation of flower traits, the pollen vector, and flower trait matching between pollen donors and recipients. Trait matching has been almost unexplored among nonheterostylous species, and we examined whether the match of anther length in pollen donors and stigma length in pollen recipients influences the efficiency of cross-pollination. To explore potential constraints for evolutionary response, we also quantified genetic variation and covariation among sepal length, petal length and width, stamen length, style length, and herkogamy. METHODS: We created 58 experimental arrays of Turnera velutina that varied in the extent of mismatch in the position of anthers and stigmas between single-flowered plants. Genetic variation and correlations among flower traits were estimated under greenhouse conditions. RESULTS: Style length, but not herkogamy, influenced the efficiency of cross-pollination. Plants with stamen length that matched the style length of other plants were more efficient pollen donors, whereas those with the style protruding above the stamens of other plants were more efficient pollen recipients. Significant broad-sense heritability (0.22 > hB 2 < 0.42) and moderate genetic correlations (0.33 > r < 0.85) among floral traits were detected. CONCLUSIONS: Our results demonstrated that anther-stigma mismatch between flowers contributed to variation in the efficiency of cross-pollination. The genetic correlations between stamen length and other floral traits suggests that any change in cross-pollination efficiency would be driven by changes in style rather than in stamen length.


Subject(s)
Flowers , Pollen , Pollination , Flowers/physiology , Flowers/anatomy & histology , Flowers/genetics , Pollen/physiology , Pollen/genetics , Genetic Variation , Phenotype
3.
Ann Bot ; 125(3): 509-520, 2020 03 09.
Article in English | MEDLINE | ID: mdl-31745546

ABSTRACT

BACKGROUND: Despite Stebbins' principle of the most efficient pollinator being proposed decades ago, the most important pollinators are still mainly identified using the frequency of visits to flowers. This shortcoming results in a gap between the characterization of the flower visitors of a plant species and a reliable estimation of the plant fitness consequences of the mutualistic interaction. The performance of a mutualistic visitor depends on its abundance, behaviour, effectiveness (pollen removal and deposition per unit time) and efficiency (seed set per unit time) conditioned by the temporal matching between pollinator activity and temporal patterns of maturation of the sexual functions of flowers. Although there have been recent attempts to provide a conceptual and methodological framework to characterize pollinators' performance, few have combined all key elements of visitors and plants to provide an accurate estimation of pollinators' performance under natural conditions. METHODS: We complement information on the flower biology and mating system of the sub-shrub Lepechinia floribunda (Lamiaceae) to provide a daily quantitative estimation of performance (effectiveness and efficiency) of the more abundant pollinators, i.e. native bumble-bees (Bombus spp.) and leafcutter bees (Megachile sp.), and the exotic honey-bee (Apis mellifera). KEY RESULTS: Unlike honey-bees or leafcutter bees, native bumble-bees matched the daily pattern of nectar production and stigma receptivity, and showed higher effectiveness and efficiency. Despite the overabundance of honey-bees, visits occurred mainly when stigmas were not receptive, thus reducing the honey-bees' overall performance. CONCLUSIONS: Bumble-bees appear to be the most important pollinators and potential historical mediators of reproductive trait evolution in L. floribunda. Because the production of seeds by bumble-bees involved fewer pollen grains for plants and less investment in floral display than honey-bees, contemporary and expected changes in pollinator abundance may affect future L. floribunda floral evolution. If bumble-bees were to be further displaced by anthropogenic disturbance or by competition with honey-bees, their lower efficiency will select for a larger floral display increasing reproductive costs. This scenario may also impose selection to reduce dichogamy to match honey-bee foraging activity.


Subject(s)
Lamiaceae , Pollination , Animals , Bees , Flowers , Pollen , Reproduction
4.
PLoS One ; 12(6): e0178827, 2017.
Article in English | MEDLINE | ID: mdl-28582433

ABSTRACT

Effects of Pleistocene climatic oscillations on plant phylogeographic patterns are relatively well studied in forest, savanna and grassland biomes, but such impacts remain less explored on desert regions of the world, especially in South America. Here, we performed a phylogeographical study of Monttea aphylla, an endemic species of the Monte Desert, to understand the evolutionary history of vegetation communities inhabiting the South American Arid Diagonal. We obtained sequences of three chloroplast (trnS-trnfM, trnH-psbA and trnQ-rps16) and one nuclear (ITS) intergenic spacers from 272 individuals of 34 localities throughout the range of the species. Population genetic and Bayesian coalescent analyses were performed to infer genealogical relationships among haplotypes, population genetic structure, and demographic history of the study species. Timing of demographic events was inferred using Bayesian Skyline Plot and the spatio-temporal patterns of lineage diversification was reconstructed using Bayesian relaxed diffusion models. Palaeo-distribution models (PDM) were performed through three different timescales to validate phylogeographical patterns. Twenty-five and 22 haplotypes were identified in the cpDNA and nDNA data, respectively. that clustered into two main genealogical lineages following a latitudinal pattern, the northern and the southern Monte (south of 35° S). The northern Monte showed two lineages of high genetic structure, and more relative stable demography than the southern Monte that retrieved three groups with little phylogenetic structure and a strong signal of demographic expansion that would have started during the Last Interglacial period (ca. 120 Ka). The PDM and diffusion models analyses agreed in the southeast direction of the range expansion. Differential effect of climatic oscillations across the Monte phytogeographic province was observed in Monttea aphylla lineages. In northern Monte, greater genetic structure and more relative stable demography resulted from a more stable climate than in the southern Monte. Pleistocene glaciations drastically decreased the species area in the southern Monte, which expanded in a southeastern direction to the new available areas during the interglacial periods.


Subject(s)
DNA, Chloroplast/genetics , DNA, Mitochondrial/genetics , Models, Statistical , Phylogeny , Plant Dispersal/physiology , Plantaginaceae/genetics , Argentina , Bayes Theorem , Desert Climate , Genetic Variation , Haplotypes , History, 21st Century , History, Ancient , Phylogeography , Plantaginaceae/classification , Spatio-Temporal Analysis
5.
New Phytol ; 203(1): 280-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24645822

ABSTRACT

Direct physical confrontation among conspecifics for access to mates is a form of sexual selection well known among animals, but not thought to take place in plants. Consequently, no structures are known that can be considered as weapons that evolved under such confrontation. Pollinaria of milkweeds may physically compete for access to attachment points on the pollinators' body, and occasionally pollinaria may link onto pre-existing pollinaria on a pollinator resulting in concatenation. We hypothesized that concatenation may result in interference between proximal and distal pollinaria, and that features of nonconcatenating pollinaria might be attributed to prevention of concatenation. We tested this by analyzing pollen donation efficiency, experimental manipulation of the phenotype and the phylogenetic patterns of co-occurrence of traits. It is shown that concatenation was able to diminish the reproductive performance of proximal pollinaria, that horns on pollinaria prevented concatenation, and that horn acquisition was correlated with a loss of concatenation. The experimental removal of horns in species that did not concatenate caused reversion to concatenation. The present work could be the first evidence of male physical struggles and of the acquisition of weapons related to these struggles, that are analogous to those known in animals.


Subject(s)
Asclepias , Flowers/anatomy & histology , Pollination , Animals , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL