Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1883, 2017.
Article in English | MEDLINE | ID: mdl-29163607

ABSTRACT

Improvements to leaf photosynthetic rates of crops can be achieved by targeted manipulation of individual component processes, such as the activity and properties of RuBisCO or photoprotection. This study shows that simple forward genetic screens of mutant populations can also be used to rapidly generate photosynthesis variants that are useful for breeding. Increasing leaf vein density (concentration of vascular tissue per unit leaf area) has important implications for plant hydraulic properties and assimilate transport. It was an important step to improving photosynthetic rates in the evolution of both C3 and C4 species and is a foundation or prerequisite trait for C4 engineering in crops like rice (Oryza sativa). A previous high throughput screen identified five mutant rice lines (cv. IR64) with increased vein densities and associated narrower leaf widths (Feldman et al., 2014). Here, these high vein density rice variants were analyzed for properties related to photosynthesis. Two lines were identified as having significantly reduced mesophyll to bundle sheath cell number ratios. All five lines had 20% higher light saturated photosynthetic capacity per unit leaf area, higher maximum carboxylation rates, dark respiration rates and electron transport capacities. This was associated with no significant differences in leaf thickness, stomatal conductance or CO2 compensation point between mutants and the wild-type. The enhanced photosynthetic rate in these lines may be a result of increased RuBisCO and electron transport component amount and/or activity and/or enhanced transport of photoassimilates. We conclude that high vein density (associated with altered mesophyll cell length and number) is a trait that may confer increased photosynthetic efficiency without increased transpiration.

2.
Sci Rep ; 7: 42839, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220807

ABSTRACT

To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.


Subject(s)
Genome, Plant , Oryza/genetics , Agriculture , Alleles , Biomass , Chromosome Mapping , Edible Grain/growth & development , Genetic Variation , Genotype , Oryza/growth & development , Phenotype , Quantitative Trait Loci
3.
Plant Mol Biol ; 87(3): 273-86, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25515696

ABSTRACT

Most agronomically important traits, including resistance against pathogens, are governed by quantitative trait loci (QTL). QTL-mediated resistance shows promise of being effective and long-lasting against diverse pathogens. Identification of genes controlling QTL-based disease resistance contributes to breeding for cultivars that exhibit high and stable resistance. Several defense response genes have been successfully used as good predictors and contributors to QTL-based resistance against several devastating rice diseases. In this study, we identified and characterized a rice (Oryza sativa) mutant line containing a 750 bp deletion in the second exon of OsPAL4, a member of the phenylalanine ammonia-lyase gene family. OsPAL4 clusters with three additional OsPAL genes that co-localize with QTL for bacterial blight and sheath blight disease resistance on rice chromosome 2. Self-pollination of heterozygous ospal4 mutant lines produced no homozygous progeny, suggesting that homozygosity for the mutation is lethal. The heterozygous ospal4 mutant line exhibited increased susceptibility to three distinct rice diseases, bacterial blight, sheath blight, and rice blast. Mutation of OsPAL4 increased expression of the OsPAL2 gene and decreased the expression of the unlinked OsPAL6 gene. OsPAL2 function is not redundant because the changes in expression did not compensate for loss of disease resistance. OsPAL6 co-localizes with a QTL for rice blast resistance, and is down-regulated in the ospal4 mutant line; this may explain enhanced susceptibility to Magnoporthe oryzae. Overall, these results suggest that OsPAL4 and possibly OsPAL6 are key contributors to resistance governed by QTL and are potential breeding targets for improved broad-spectrum disease resistance in rice.


Subject(s)
Genes, Plant , Oryza/enzymology , Oryza/genetics , Phenylalanine Ammonia-Lyase/genetics , Plant Diseases/genetics , Plant Diseases/prevention & control , Plant Proteins/genetics , Disease Resistance/genetics , Disease Resistance/physiology , Exons , Gene Expression , Magnaporthe/pathogenicity , Multigene Family , Oryza/physiology , Phylogeny , Plant Diseases/microbiology , Quantitative Trait Loci , Seedlings/genetics , Sequence Deletion
4.
Mol Plant Microbe Interact ; 27(6): 528-36, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24794921

ABSTRACT

Lesion mimic mutants have been used to dissect programmed cell death (PCD) and defense-related pathways in plants. The rice lesion-mimic mutant spl11 exhibits race nonspecific resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. Spl11 encodes an E3 ubiquitin ligase and is a negative regulator of PCD in rice. To study the regulation of Spl11-mediated PCD, we performed a genetic screen and identified three spl11 cell-death suppressor (sds) mutants. These suppressors were characterized for their resistance to X. oryzae pv. oryzae and M. oryzae and for their expression of defense-related genes. The suppression of the cell-death phenotypes was generally correlated with reduced expression of defense-related genes. When rice was challenged with avirulent isolates of M. oryzae, the disease phenotype was unaffected in the sds mutants, indicating that the suppression might be Spl11-mediated pathway specific and may only be involved in basal defense. In addition, we mapped one of the suppressor mutations to a 140-kb interval on the long arm of rice chromosome 1. Identification and characterization of these sds mutants should facilitate our efforts to elucidate the Spl11-mediated PCD pathway.


Subject(s)
Gene Expression Regulation, Plant , Magnaporthe/pathogenicity , Oryza/genetics , Plant Diseases/immunology , Plant Immunity , Plant Proteins/genetics , Xanthomonas/pathogenicity , Cell Death , Chromosome Mapping , Mutation , Oryza/immunology , Oryza/physiology , Phenotype , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Plant Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
PLoS One ; 9(4): e94947, 2014.
Article in English | MEDLINE | ID: mdl-24760084

ABSTRACT

A high leaf vein density is both an essential feature of C4 photosynthesis and a foundation trait to C4 evolution, ensuring the optimal proportion and proximity of mesophyll and bundle sheath cells for permitting the rapid exchange of photosynthates. Two rice mutant populations, a deletion mutant library with a cv. IR64 background (12,470 lines) and a T-DNA insertion mutant library with a cv. Tainung 67 background (10,830 lines), were screened for increases in vein density. A high throughput method with handheld microscopes was developed and its accuracy was supported by more rigorous microscopy analysis. Eight lines with significantly increased leaf vein densities were identified to be used as genetic stock for the global C4 Rice Consortium. The candidate population was shown to include both shared and independent mutations and so more than one gene controlled the high vein density phenotype. The high vein density trait was found to be linked to a narrow leaf width trait but the linkage was incomplete. The more genetically robust narrow leaf width trait was proposed to be used as a reliable phenotypic marker for finding high vein density variants in rice in future screens.


Subject(s)
Oryza/anatomy & histology , Plant Leaves/anatomy & histology , Plants, Genetically Modified/anatomy & histology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mutagenesis , Oryza/genetics , Plant Leaves/genetics , Plants, Genetically Modified/genetics
6.
J Integr Plant Biol ; 53(8): 671-81, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21605341

ABSTRACT

A rice spotted-leaf mutant was isolated from an ethane methyl sulfonate (EMS) -induced IR64 mutant bank. The mutant, designated as spl30 (spotted-leaf30), displayed normal green leaf color under shade but exhibited red-brown lesions under natural summer field conditions. Initiation of the lesions was induced by light and the symptom was enhanced at 33 (°) C relative to 26 (°) C. Histochemical staining did not show cell death around the red-brown lesions. Chlorophyll contents in the mutant were significantly lower than those of the wild type while the ratio of chlorophyll a/b remained the same, indicating that spl30 was impaired in biosynthesis or degradation of chlorophyll. Disease reaction patterns of the mutant to Xanthomonas oryzae pv. oryzae were largely unchanged to most races tested except for a few strains. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively named spl30(t), which co-segregated with RM15380 on chromosome 3, and was delimited to a 94 kb region between RM15380 and RM15383. Spl30(t) is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region. The genetic data and recombination populations provided in this study will enable further fine-mapping and cloning of the gene.


Subject(s)
Genes, Plant/genetics , Light , Mutation/genetics , Oryza/genetics , Oryza/radiation effects , Plant Leaves/genetics , Temperature , Carotenoids/metabolism , Cell Death/radiation effects , Chlorophyll/metabolism , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Markers , Oryza/microbiology , Phenotype , Plant Leaves/cytology , Plant Leaves/radiation effects , Xanthomonas/physiology , Xanthomonas/radiation effects
7.
Mol Genet Genomics ; 279(6): 605-19, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18357468

ABSTRACT

Lesion mimic mutants are characterized by the formation of necrotic lesions in the absence of pathogens. Such genetic defects often result in enhanced resistance to pathogen infection and constitutive expression of defense response genes. To understand the genetic mechanisms leading to these mutations, we characterized 21 lesion mimic mutants isolated from IR64 rice mutant populations produced by mutagenesis with diepoxybutane (D), gamma rays (G), and fast neutrons (F). Four mutations are controlled by single dominant genes, one of which is inherited maternally. Five lesion mimics are allelic to known spotted leaf (spl) mutants spl1, spl2, spl3, or spl6. In total, 11 new lesion mimic mutations, named spl16, spl17, and spl19 through Spl27, were established based on allelism tests. Two lesion mimics, spl17 and Spl26 showed enhanced resistance to multiple strains of Magnaporthe oryzae, the rice blast pathogen, and Xanthomonas oryzae pv. oryzae, the bacterial blight (BB) pathogen. Co-segregation analyses of blast and BB resistance and lesion mimic phenotypes in segregating populations of spl17 and Spl26 indicate that enhanced resistance to the two diseases is conferred by mutations in the lesion mimic genes. A double mutant produced from two independent lesion mimics showed more severe lesions and higher level of resistance to X. o. pv. oryzae than their single mutant parents indicating a synergistic effect of the two mutations. In mutants that exhibit enhanced disease resistance to both pathogens, increases in expression of defense response genes PR-10a, POX22.3, and PO-C1 were correlated with lesion mimic development and enhancement of resistance. These lesion mimic mutants may provide essential materials for a comprehensive dissection of the disease resistance pathways in rice.


Subject(s)
Mutation , Oryza/genetics , Plant Diseases/genetics , Alleles , Gene Expression , Immunity, Innate/genetics , Inheritance Patterns , Magnaporthe , Mutagenesis , Oryza/metabolism , Phenotype , Plant Diseases/microbiology , Xanthomonas
8.
Plant Mol Biol ; 59(1): 85-97, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16217604

ABSTRACT

IR64, the most widely grown indica rice in South and Southeast Asia, possesses many positive agronomic characteristics (e.g., wide adaptability, high yield potential, tolerance to multiple diseases and pests, and good eating quality,) that make it an ideal genotype for identifying mutational changes in traits of agronomic importance. We have produced a large collection of chemical and irradiation-induced IR64 mutants with different genetic lesions that are amenable to both forward and reverse genetics. About 60,000 IR64 mutants have been generated by mutagenesis using chemicals (diepoxybutane and ethylmethanesulfonate) and irradiation (fast neutron and gamma ray). More than 38,000 independent lines have been advanced to M4 generation enabling evaluation of quantitative traits by replicated trials. Morphological variations at vegetative and reproductive stages, including plant architecture, growth habit, pigmentation and various physiological characters, are commonly observed in the four mutagenized populations. Conditional mutants such as gain or loss of resistance to blast, bacterial blight, and tungro disease have been identified at frequencies ranging from 0.01% to 0.1%. Results from pilot experiments indicate that the mutant collections are suitable for reverse genetics through PCR-detection of deletions and TILLING. Furthermore, deletions can be detected using oligomer chips suggesting a general technique to pinpoint deletions when genome-wide oligomer chips are broadly available. M4 mutant seeds are available for users for screening of altered response to multiple stresses. So far, more than 15,000 mutant lines have been distributed. To facilitate broad usage of the mutants, a mutant database has been constructed in the International Rice Information System (IRIS; http: //www.iris.irri.org) to document the phenotypes and gene function discovered by users.


Subject(s)
Mutation/genetics , Oryza/drug effects , Oryza/radiation effects , DNA, Plant/genetics , DNA, Plant/isolation & purification , Databases, Genetic , Epoxy Compounds/toxicity , Ethyl Methanesulfonate/toxicity , Genetic Variation , Genome, Plant , Genotype , Immunity, Innate/genetics , Mutagens/toxicity , Oryza/genetics , Phenotype , Plant Diseases/genetics , Plant Diseases/microbiology , Radiation, Ionizing , Reproduction/genetics , Seeds/genetics
9.
Plant Cell ; 16(10): 2795-808, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15377756

ABSTRACT

The rice (Oryza sativa) spotted leaf11 (spl11) mutant was identified from an ethyl methanesulfonate-mutagenized indica cultivar IR68 population and was previously shown to display a spontaneous cell death phenotype and enhanced resistance to rice fungal and bacterial pathogens. Here, we have isolated Spl11 via a map-based cloning strategy. The isolation of the Spl11 gene was facilitated by the identification of three additional spl11 alleles from an IR64 mutant collection. The predicted SPL11 protein contains both a U-box domain and an armadillo (ARM) repeat domain, which were demonstrated in yeast and mammalian systems to be involved in ubiquitination and protein-protein interactions, respectively. Amino acid sequence comparison indicated that the similarity between SPL11 and other plant U-box-ARM proteins is mostly restricted to the U-box and ARM repeat regions. A single base substitution was detected in spl11, which results in a premature stop codon in the SPL11 protein. Expression analysis indicated that Spl11 is induced in both incompatible and compatible rice-blast interactions. In vitro ubiquitination assay indicated that the SPL11 protein possesses E3 ubiquitin ligase activity that is dependent on an intact U-box domain, suggesting a role of the ubiquitination system in the control of plant cell death and defense.


Subject(s)
Cell Death/physiology , Plant Proteins/physiology , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chromosomes, Plant , DNA Primers , Drosophila melanogaster , Genetic Complementation Test , Molecular Sequence Data , Mutation , Oryza , Physical Chromosome Mapping , Plant Proteins/chemistry , Plant Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...