Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 302: 198487, 2021 09.
Article in English | MEDLINE | ID: mdl-34157336

ABSTRACT

Worldwide, potato (Solanum tuberosum L.) is the third most important food crop after rice and wheat. Its production is however constrained by several virus diseases. The occurrence and distribution of the economically important viruses and associated insect vectors is however not known for Rwanda and Burundi, where potato is an important food security and income crop. We surveyed 194 potato fields for viruses and insect vectors. Aphids were commonly found infesting farmers' potato fields in contrast to whiteflies. Testing by Enzyme Linked Immunosorbent Assay (ELISA) for six potato viruses identified five viruses: potato leafroll virus (PLRV), potato virus X, S, M and Y (PVX, PVS, PVM, PVY) in Rwanda and two viruses (PLRV and PVS) in Burundi. A subset of samples were analyzed using small RNA sequencing and assembly (sRSA) and additionally revealed presence of PVX and for the first time, tobacco rattle virus (TRV) in Burundi. PLRV and PVS were most common while PVY was rare and not found in Burundi, which is highly unusual. To our knowledge, this is the first report of TRV infecting potatoes in sub-Saharan Africa. Phylogenetic analysis of 14 complete viral genomes determined by sRSA suggested multiple introductions of viruses into the region.


Subject(s)
Potyvirus , Solanum tuberosum , Viruses , Burundi/epidemiology , Phylogeny , Plant Diseases , Potyvirus/genetics , Rwanda
2.
Plants (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374402

ABSTRACT

Genomic selection (GS) can accelerate variety improvement when training set (TS) size and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%, and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***) between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

3.
BMC Plant Biol ; 20(1): 3, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898489

ABSTRACT

BACKGROUND: Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. RESULTS: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-value < 5 × 10- 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. CONCLUSION: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.


Subject(s)
Ipomoea batatas/genetics , Plant Roots/genetics , Plant Roots/metabolism , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Indoleacetic Acids/metabolism , Oxidation-Reduction , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait Loci
4.
Gates Open Res ; 3: 83, 2019.
Article in English | MEDLINE | ID: mdl-32537562

ABSTRACT

This study investigated the phenotypic variation of continuous storage root formation and bulking (CSRFAB) growth patterns underlying the development of sweetpotato genotypes for identification of potential varieties adapted to piecemeal harvesting for small scale farmers. The research was conducted between September 2016 and August 2017 in Uganda. Genotypes from two distinct sweetpotato genepool populations (Population Uganda A and Population Uganda B) comprising 130 genotypes, previously separated using 31 simple sequence repeat (SSR) markers were used. Measurements (4 harvest times with 4 plants each) were repeated on genotypes in a randomized complete block design with 2 replications in 2 locations for 2 seasons. We developed a scoring scale of 1 to 9 and used it to compare growth changes between consecutive harvests. Data analysis was done using residual or restricted maximum likelihood (REML). Data showed a non-linear growth pattern within and between locations, seasons, and genotypes for most traits. Some genotypes displayed early initiation and increase of bulking, while others showed late initiation. Broad sense heritability of CSRFAB was low due to large GxE interactions but higher in other traits  probably due to high genetic influence and the effectiveness of the methodology. A high level of reproducibility (89%) was observed comparing 2016B and 2017A seasons (A and B are first and second season, respectively) at the National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda. Choosing CSRFAB genotypes can more than double the sweetpotato production (average maximum yield of 13.1 t/ha for discontinuous storage root formation and bulking (DSRFAB) versus 28.6 t/ha for CSRFAB, demonstrating the importance of this underresearched component of storage root yield.

SELECTION OF CITATIONS
SEARCH DETAIL
...