Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 122(11): 3096-3106, 2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29489369

ABSTRACT

A comparison between the free-energy surfaces of the all- trans-retinal protonated Schiff base (RPSB) and its 10-methylated derivative in gas phase and methanol solution is performed at CASSCF//CASSCF and CASPT2//CASSCF levels. Solvent effects were included using the average solvent electrostatic potential from molecular dynamics method. This is a QM/MM (quantum mechanics/molecular mechanics) method that makes use of the mean field approximation. It is found that the methyl group bonded to C10 produces noticeable changes in the solution free-energy profile of the S1 excited state, mainly in the relative stability of the minimum energy conical intersections (MECIs) with respect to the Franck-Condon (FC) point. The conical intersections yielding the 9- cis and 11- cis isomers are stabilized while that yielding the 13- cis isomer is destabilized; in fact, it becomes inaccessible by excitation to S1. Furthermore, the planar S1 minimum is not present in the methylated compound. The solvent notably stabilizes the S2 excited state at the FC geometry. Therefore, if the S2 state has an effect on the photoisomerization dynamics, it must be because it permits the RPSB population to branch around the FC point. All these changes combine to speed up the photoisomerization in the 10-methylated compound with respect to the native compound.

2.
J Comput Chem ; 36(25): 1893-901, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26213207

ABSTRACT

The interest on room temperature ionic liquids has grown in the last decades because of their use as all-purpose solvent and their low environmental impact. In the present work, a new theoretical procedure is developed to study pure ionic liquids within the framework of the quantum mechanics/molecular mechanics method. Each type of ion (cation or anion) is considered as an independent entity quantum mechanically described that follows a differentiated path in the liquid. The method permits, through an iterative procedure, the full coupling between the polarized charge distribution of the ions and the liquid structure around them. The procedure has been tested with 1-ethyl-3-methylimidazolium tetrafluoroborate. It was found that, similar to non-polar liquids and as a consequence of the low value of the reaction field, the cation and anion charge distributions are hardly polarized by the rest of molecules in the liquid. Their structure is characterized by an alternance between anion and cation shells as evidenced by the coincidence of the first maximum of the anion-anion and cation-cation radial distribution functions with the first minimum of the anion-cation. Some degree of stacking between the cations is also found.

3.
J Phys Chem B ; 118(43): 12518-30, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25296001

ABSTRACT

The ground and low-lying excited free energy surfaces of 4-amino-4'-cyano azobenzene, a molecule that has been proposed as building block for chiroptical switches, are studied in gas phase and a variety of solvents (benzene, chloroform, acetone, and water). Solvent effects on the absorption and emission spectra and on the cis-trans thermal and photo isomerizations are analyzed using two levels of calculation: TD-DFT and CASPT2/CASSCF. The solvent effects are introduced using a polarizable continuum model and a QM/MM method, which permits one to highlight the role played by specific interactions. We found that, in gas phase and in agreement with the results found for other azobenzenes, the thermal cis-trans isomerization follows a rotation-assisted inversion mechanism where the inversion angle must reach values close to 180° but where the rotation angle can take almost any value. On the contrary, in polar solvents the mechanism is controlled by the rotation of the CN═NC angle. The change in the mechanism is mainly related to a better solvation of the nitrogen atoms of the azo group in the rotational transition state. The photoisomerization follows a rotational pathway both in gas phase and in polar and nonpolar solvents. The solvent introduces only small modifications in the nπ* free energy surface (S1), but it has a larger effect on the ππ* surface (S2) that, in polar solvents, gets closer to S1. In fact, the S2 band of the absorption spectrum is red-shifted 0.27 eV for the trans isomer and 0.17 eV for the cis. In the emission spectrum the trend is similar: only S2 is appreciably affected by the solvent, but in this case a blue shift is found.

SELECTION OF CITATIONS
SEARCH DETAIL
...