Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Mol Diagn ; 24(11): 1113-1127, 2022 11.
Article in English | MEDLINE | ID: mdl-35963522

ABSTRACT

Several fusion genes such as BCR::ABL1, FIP1L1::PDGFRA, and PML::RARA are now efficiently targeted by specific therapies in patients with leukemia. Although these therapies have significantly improved patient outcomes, leukemia relapse and progression remain clinical concerns. Most myeloid next-generation sequencing (NGS) panels do not detect or quantify these fusions. It therefore remains difficult to decipher the clonal architecture and dynamics of myeloid malignancy patients, although these factors can affect clinical decisions and provide pathophysiologic insights. An asymmetric capture sequencing strategy (aCAP-Seq) and a bioinformatics algorithm (HmnFusion) were developed to detect and quantify MBCR::ABL1, µBCR::ABL1, PML::RARA, and FIP1L1::PDGFRA fusion genes in an NGS panel targeting 41 genes. One-hundred nineteen DNA samples derived from 106 patients were analyzed by conventional methods at diagnosis or on follow-up and were sequenced with this NGS myeloid panel. The specificity and sensitivity of fusion detection by aCAP-Seq were 100% and 98.1%, respectively, with a limit of detection estimated at 0.1%. Fusion quantifications were linear from 0.1% to 50%. Breakpoint locations and sequences identified by NGS were concordant with results obtained by Sanger sequencing. Finally, this new sensitive and cost-efficient NGS method allowed integrated analysis of resistant chronic myeloid leukemia patients and thus will be of interest to elucidate the mutational landscape and clonal architecture of myeloid malignancies driven by these fusion genes at diagnosis, relapse, or progression.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Fusion Proteins, bcr-abl/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , High-Throughput Nucleotide Sequencing/methods , Mutation/genetics , Recurrence
3.
Hematol Oncol ; 36(1): 336-339, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28556926

ABSTRACT

Myeloproliferative neoplasms are characterized by transduction pathway recognized as mutually exclusive molecular abnormalities such as BCR-ABL translocation, JAK2V617F or JAK2 exon 12 mutations, MPL w515, and CALR mutations. However, in some rare cases, associations of such mutations are found in 1 patient. This can be related to 2 pathologies (at least 2 different clones harboring 2 mutations) or associated mutations in 1 clone. We describe here such an association of CALR and MPL mutations in a patient harboring the second mutation in a subclone during the phenotypic evolution of the myeloproliferative neoplasms.


Subject(s)
Myeloproliferative Disorders/genetics , Thrombocythemia, Essential/genetics , Female , Humans , Mutation , Myeloproliferative Disorders/pathology , Sequence Deletion , Thrombocythemia, Essential/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...