Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38391991

ABSTRACT

One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).


Subject(s)
Biosensing Techniques , Space Flight , Humans , Hydrocortisone , Equipment Design , Dehydroepiandrosterone
2.
Biosens Bioelectron ; 226: 115110, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36750012

ABSTRACT

Space exploration is facing a new era in view of the planned missions to the Moon and Mars. The development and the in-flight validation of new technologies, including analytical and diagnostic platforms, is pivotal for exploring and inhabiting these extreme environments. In this context, biosensors and lab-on-chip devices can play an important role in many situations, such as the analysis of biological samples for assessing the impact of deep space conditions on man and other biological systems, environmental and food safety monitoring, and the search of molecular indicators of past or present life in extra-terrestrial environments. Small satellites such as CubeSats are nowadays increasingly exploited as fast and low-cost platforms for conducting in-flight technology validation. Herein, we report the development of a fully autonomous lab-on-chip platform for performing chemiluminescence-based bioassays in space. The device was designed to be hosted onboard the AstroBio CubeSat nanosatellite, with the aim of conducting its in-flight validation and evaluating the stability of (bio)molecules required for bioassays in a challenging radiation environment. An origami-like microfluidic paper-based analytical format allowed preloading all the reagents in the dried form on the paper substrate, thus simplifying device design and analytical protocols, facilitating autonomous assay execution, and enhancing the stability of reagents. The chosen approach should constitute the first step to implement a mature technology with the aim to conduct life science research in space (e.g., for evaluation the effect of deep space conditions on living organisms or searching molecular evidence of life) more easily and at lower cost than previously possible.


Subject(s)
Biosensing Techniques , Space Flight , Humans , Exobiology , Luminescence , Microfluidics
SELECTION OF CITATIONS
SEARCH DETAIL
...