Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212802

ABSTRACT

Laser sources emitting in the infrared range at around 2 µm are attracting great interest for a variety of applications like processing of transparent thermoplastic polymers in industry as well as plenty of applications in medicine, spectroscopy, gas sensing, nonlinear frequency conversion to the mid-infrared, to mention a few. Of late, fiber lasers compared to other kinds of lasers benefit from their all-fiber design, leading to a compact, robust, and well thermally manageable device. Particularly, thulium- and holmium-doped fiber lasers are the first choice in fiber lasers emitting light around 2 µm. In this paper, we give an overview of our recent results in the research on thulium- and holmium-doped optical fibers, fiber lasers, and related research topics in the 2-µm spectral range. In particular, we present, to our knowledge, the first results of improvement of pump absorption in double-clad fibers thanks to the fiber twist frozen during drawing. Finally, a brief demonstration of material processing by thulium all-fiber laser operating at 2 µm is presented.

2.
Opt Lett ; 43(6): 1339-1342, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543286

ABSTRACT

We present a broadly tunable single-frequency ytterbium-doped fiber laser. Its broadband tunability is made possible by low resonator losses. The wavelength is determined by a grating filter, while the single-frequency regime is achieved by filtering the longitudinal modes in a fiber ring resonance filter. We obtained a tuning range from 1023 nm to 1107 nm. A feedback loop driving a fiber stretcher actuated by a piezo-element prevents mode hopping. Based on the coherent delayed self-heterodyne interferometry, the laser linewidth is estimated to be 600 Hz with feedback open and 11.7 kHz with feedback closed.

3.
Opt Express ; 24(1): 102-7, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26832241

ABSTRACT

Results of the first experimental demonstration of the recently proposed technique for improvement of the pump absorption in double-clad fibers by their simultaneous coiling and twisting are reported. The peak absorption (14 dB) of 3-m long hexagonal thulium-doped fiber was increased by 8 dB by its simultaneous coiling and twisting. Explanation of the effect is given by numerical modelling of the pump absorption in hexagonal and panda-type double-clad fibers. Improvement of fiber laser performance was also proved. The slope efficiency increased from 19.6% of the straight fiber to 23.9% of the coiled only fiber and 29.4% of the simultaneously coiled and twisted fiber.

4.
Opt Express ; 24(26): 30225-30233, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059298

ABSTRACT

We milled a sub-wavelength diffraction grating on the facet of a large mode area fiber. The diffraction grating had different reflectivities for TE and TM polarized light. It was tested in a thulium-doped fiber laser where it functioned as a low reflectivity output mirror integrated with an intracavity polarizer. Compared to the laser with a perpendicularly cleaved output fiber, the laser with diffraction grating had a slightly increased threshold power and the same slope efficiency. The beam quality factor M2 was not impaired. Polarization extinction ratios of about 20 dB that were observed at low laser powers dropped to 10 dB at high powers.

5.
Appl Opt ; 54(4): 751-6, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25967784

ABSTRACT

We report on a novel mode-field adapter that is proposed to be incorporated inside tapered fused-fiber-bundle pump and signal combiners for high-power double-clad fiber lasers. Such an adapter allows optimization of signal-mode-field matching on the input and output fibers. Correspondingly, losses of the combiner signal branch are significantly reduced. The mode-field adapter optimization procedure is demonstrated on a combiner based on commercially available fibers. Signal wavelengths of 1.55 and 2 µm are considered. The losses can be further improved by using specially designed intermediate fiber and by dopant diffusion during splicing as confirmed by preliminary experimental results.

6.
Opt Lett ; 39(12): 3650-3, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24978559

ABSTRACT

We have experimentally demonstrated two extremely wideband amplified spontaneous emission (ASE) sources. High bandwidth is achieved by combining the backward and forward ASEs generated in thulium-holmium-doped fiber using appropriate wideband couplers. The ASE source optimized for flat spectral power density covers a spectral range from 1527 to 2171 nm at a -10 dB level. The ASE source optimized for spectroscopy features an enhancement with respect to single-mode fiber (SMF) coupled halogen lamps within the spectral range from 1540 nm to more than 2340 nm covering the 800 nm bandwidth.


Subject(s)
Holmium , Lasers, Solid-State , Optical Fibers , Thulium , Amplifiers, Electronic , Fiber Optic Technology/methods , Optical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...