Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pathophysiology ; 9(2): 115-125, 2003 Jan.
Article in English | MEDLINE | ID: mdl-14567944

ABSTRACT

The research aim of the present investigation was to identify leukocyte enzyme-proteases that have the capacity to biochemically recruit the passive participation of vascular endothelium in cytokine receptor 'shedding' phenomenon involving membrane-associated TNF RII (80-kDa) and IL-1 RI (80-kDa) complexes. Achieving this research objective involved the design of a laboratory approach that delineated to what extent enzyme-proteases released by activated macrophages directly interact with, and liberate soluble fragments of membrane-associated cytokine receptor complexes. Results from this segment of the investigation revealed that cathepsin-D, a leukocyte carboxyl/aspartate protease, altered the integrity and generated soluble fragments of TNF RII (80-kDa) and IL-1 RI (80-kDa) receptor complexes expressed by vascular endothelium. Furthermore, laboratory findings also suggested that cathepsin-D possessed the ability to variably deplete biologically functional membrane-associated TNF RII (80-kDa) and IL-1 RI (80-kDa) complexes. Complementary investigations isolated a carboxyl/aspartate protease from activated macrophages utilizing pepstatin-A affinity chromatography. Exposure of vascular endothelium to pepstatin-A binding proteins resulted in a detectable depletion of membrane-associated TNF RII (80-kDa) and IL-1 RI (80-kDa) in addition to the generation of soluble receptor fragments. Analysis of macrophage pepstatin-A binding proteins by SDS-PAGE identified a primary fraction with a molecular mass of 47-52-kDa that closely correlated with the known molecular mass of leukocyte cathepsin-D. Evaluation of macrophage pepstatin-A binding-protein fractions by non-denaturing Hb-PAGE detected a lucent proteolytic band at 47-52-kDa compatible with the known molecular mass of leukocyte cathepsin-D. Macrophage pepstatin-A binding proteins also hydrolyzed a synthetic enzyme-specific substrate that selectively recognizes cathepsin-D biochemical activity. In conclusion, the leukocyte carboxyl/aspartate protease, cathepsin-D can biochemically alter the integrity and generate soluble fragments of membrane-associated TNF RII (80-kDa) and IL-1 RI (80-kDa) receptor complexes expressed by vascular endothelium. The relevance of this concept is in part based on investigations that have discovered that genetic 'knock-out' mice incapable of expressing IL-1 RI (80-kDa) or TNF RI (55-kDa) receptor complexes are highly resistant to developing the pathophysiological alterations classically associated with conditions of endotoxic-shock.

SELECTION OF CITATIONS
SEARCH DETAIL
...