Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Atmos Meas Tech ; 9(6): 2497-2534, 2016.
Article in English | MEDLINE | ID: mdl-29743958

ABSTRACT

The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of fourteen limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias, and short-term variability, together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20-40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12% and the drifts are at most ±5% decade-1 (or even ±3 % decade-1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions; we identified biases of 10% and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY), and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE, and possibly GOMOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.

2.
J Environ Monit ; 8(10): 1020-8, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17240908

ABSTRACT

The assessment of changes induced by human activities on Earth atmospheric composition and thus on global climate requires a long-term and regular survey of the stratospheric and tropospheric atmospheric layers. The objective of this paper is to describe the atmospheric observations performed continuously at Reunion Island (55.5 degrees east, 20.8 degrees south) for 15 years. The various instruments contributing to the systematic observations are described as well as the measured parameters, the accuracy and the database. The LiDAR systems give profiles of temperature, aerosols and ozone in the troposphere and stratosphere, probes give profiles of temperature, ozone and relative humidity, radiometers and spectrometers give stratospheric and tropospheric integrated columns of a variety of atmospheric trace gases. Data are included in international networks, and used for satellite validation. Moreover, some scientific activities for which this station offers exceptional opportunities are highlighted, especially air mass exchanges nearby dynamical barriers: (1) On the vertical scale through the tropical tropopause layer (stratosphere-troposphere exchange). (2) On the quasi-horizontal scale across the southern subtropical barrier separating the tropical stratospheric reservoir from mid- and high latitudes.


Subject(s)
Environmental Monitoring/instrumentation , Oxidants, Photochemical/analysis , Ozone/analysis , Aerosols , Greenhouse Effect , Photometry , Temperature , Tropical Climate
3.
Appl Opt ; 38(33): 6808-17, 1999 Nov 20.
Article in English | MEDLINE | ID: mdl-18324220

ABSTRACT

Rayleigh-Mie lidar measurements of stratospheric temperature and aerosol profiles have been carried out at Reunion Island (southern tropics) since 1993. Since June 1998, an operational extension of the system is permitting additional measurements of tropospheric ozone to be made by differential absorption lidar. The emission wavelengths (289 and 316 nm) are obtained by stimulated Raman shifting of the fourth harmonic of a Nd:YAG laser in a high-pressure deuterium cell. A mosaic of four parabolic mirrors collects the backscattered signal, and the transmission is processed by the multiple fiber collector method. The altitude range of ozone profiles obtained with this system is 3¿17 km. Technical details of this lidar system working in the southern tropics, comparisons of ozone lidar profiles with radiosondes, and scientific perspectives are presented. The significant lack of tropospheric ozone measurements in the tropical and equatorial regions, the particular scientific interest in these regions, and the altitude range of the ozone measurements to 16¿17 km make this lidar supplement useful and its adaptation technically conceivable at many Rayleigh-Mie lidar stations.

SELECTION OF CITATIONS
SEARCH DETAIL
...