Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Prot Dosimetry ; 167(1-3): 302-5, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25948829

ABSTRACT

Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m(-3), representing the Swiss concentration average of 70 Bq m(-3) over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m(-3). For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a (241)Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 11929.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Radiometry/instrumentation , Radiometry/standards , Radon/analysis , Semiconductors/standards , Air Pollutants, Radioactive/standards , Calibration/standards , Internationality , Monte Carlo Method , Radiometry/methods , Radon/standards , Reproducibility of Results , Sensitivity and Specificity , Switzerland
2.
Radiat Prot Dosimetry ; 167(1-3): 75-81, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25920793

ABSTRACT

Indoor radon concentrations exhibit strong variations on short and long timescales. Besides human influences, meteorological factors significantly affect the radon concentrations indoors as well as outdoors. In this article, long-term measurements showing strong annual variations are presented, which take a very similar course in different buildings located in largely separated regions in Switzerland. Also, seasonal variations can be very significant. In general, variations in indoor radon levels can primarily be attributed to human influences. On the other hand, specific weather conditions can have a significant impact on indoor radon levels. In order to further investigate the connection between indoor radon levels and meteorological factors, a measuring campaign has been started in two buildings located in two different regions in Switzerland exhibiting different climatic characteristics. Preliminary results of these investigations are presented, which provide evidence for correlations between indoor radon levels and in particular outdoor temperatures, contributing to seasonal and annual as well as short-term variations in indoor radon concentrations.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Radiometry/methods , Radon/analysis , Seasons , Weather , Radiation Dosage , Radiometry/trends , Reproducibility of Results , Sensitivity and Specificity , Switzerland , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...