Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Oral Microbiol ; 14(1): 2004790, 2022.
Article in English | MEDLINE | ID: mdl-34880965

ABSTRACT

BACKGROUND: Alcohol use disorder (AUD)-induced disruption of oral microbiota can lead to poor oral health; there have been no studies published examining the longitudinal effects of alcohol use cessation on the oral microbiome. AIM: To investigate the oral microbiome during alcohol cessation during inpatient treatment for AUD. METHODS: Up to 10 oral tongue brushings were collected from 22 AUD patients during inpatient treatment at the National Institutes of Health. Alcohol use history, smoking, and periodontal disease status were measured. Oral microbiome samples were sequenced using 16S rRNA gene sequencing. RESULTS: Alpha diversity decreased linearly during treatment across the entire cohort (P = 0.002). Alcohol preference was associated with changes in both alpha and beta diversity measures. Characteristic tongue dorsum genera from the Human Microbiome Project such as Streptococcus, Prevotella, Veillonella and Haemophilus were highly correlated in AUD. Oral health-associated genera that changed longitudinally during abstinence included Actinomyces, Capnocytophaga, Fusobacterium, Neisseria and Prevotella. CONCLUSION: The oral microbiome in AUD is affected by alcohol preference. Patients with AUD often have poor oral health but abstinence and attention to oral care improve dysbiosis, decreasing microbiome diversity and periodontal disease-associated genera while improving acute oral health.

2.
Ann Hematol ; 98(6): 1351-1365, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30919073

ABSTRACT

The microbiome, an intriguing component of the human body, composed of trillions of microorganisms, has prompted scientific exploration to identify and understand its function and role in health and disease. As associations between microbiome composition, disease, and symptoms accumulate, the future of medicine hinges upon a comprehensive knowledge of these microorganisms for patient care. The oral microbiome may provide valuable and efficient insight for predicting future changes in disease status, infection, or treatment course. The main aim of this pilot study was to characterize the oral microbiome in patients with severe aplastic anemia (SAA) during their therapeutic course. SAA is a hematologic disease characterized by bone marrow failure which if untreated is fatal. Treatment includes either hematopoietic stem cell transplantation (HSCT) or immunosuppressive therapy (IST). In this study, we examined the oral microbiome composition of 24 patients admitted to the National Institutes of Health (NIH) Clinical Center for experimental SAA treatment. Tongue brushings were collected to assess the effects of treatment on the oral microbiome. Twenty patients received standard IST (equine antithymocyte globulin and cyclosporine) plus eltrombopag. Four patients underwent HSCT. Oral specimens were obtained at three time points during treatment and clinical follow-up. Using a novel approach to 16S rRNA gene sequence analysis encompassing seven hypervariable regions, results demonstrated a predictable decrease in microbial diversity over time among the transplant patients. Linear discriminant analysis or LefSe reported a total of 14 statistically significant taxa (p < 0.05) across time points in the HSCT patients. One-way plots of relative abundance for two bacterial species (Haemophilus parainfluenzae and Rothia mucilaginosa) in the HSCT group, show the differences in abundance between time points. Only one bacterial species (Prevotella histicola) was noted in the IST group with a p value of 0.065. The patients receiving immunosuppressive therapy did not exhibit a clear change in diversity over time; however, patient-specific changes were noted. In addition, we compared our findings to tongue dorsum samples from healthy participants in the Human Microbiome Project (HMP) database and found among HSCT patients, approximately 35% of bacterial identifiers (N = 229) were unique to this study population and were not present in tongue dorsum specimens obtained from the HMP. Among IST-treated patients, 45% (N = 351) were unique to these patients and not identified by the HMP. Although antibiotic use may have likely influenced bacterial composition and diversity, some literature suggests a decreased impact of antimicrobials on the oral microbiome as compared to their effect on the gut microbiome. Future studies with larger sample sizes that focus on the oral microbiome and the effects of antibiotics in an immunosuppressed patient population may help establish these potential associations.


Subject(s)
Anemia, Aplastic/microbiology , Microbiota , Mouth/microbiology , Adult , Aged , Anemia, Aplastic/drug therapy , Anemia, Aplastic/therapy , Anti-Bacterial Agents/pharmacology , Antilymphocyte Serum/therapeutic use , Benzoates/pharmacology , Benzoates/therapeutic use , Biodiversity , Cyclosporine/therapeutic use , DNA, Bacterial/analysis , Dental Health Surveys , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/microbiology , Hematopoietic Stem Cell Transplantation , Humans , Hydrazines/pharmacology , Hydrazines/therapeutic use , Immunocompromised Host , Immunosuppressive Agents/therapeutic use , Male , Microbiota/drug effects , Middle Aged , Pilot Projects , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Ribotyping , Sequence Analysis, DNA , Smoking/epidemiology , T-Lymphocytes/immunology , Tongue/microbiology , Young Adult
3.
Brain Behav Immun ; 27(1): 63-70, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23022913

ABSTRACT

PURPOSE: Neuroinflammatory mechanisms are associated with fatigue in neurodegenerative conditions such as Parkinson's. The symptoms in Parkinson's including fatigue are thought to be related to α-synuclein overexpression. This study investigated genomic correlates of fatigue experienced by men with prostate cancer receiving external beam radiation therapy (EBRT). PATIENTS AND METHODS: Sixteen men with non-metastatic prostate cancer who were scheduled to receive EBRT were enrolled. Fatigue scores and blood were obtained at baseline (prior to EBRT, D0); one hour following initiation of EBRT (D1), day 7 (D7), day 14 (D14), midpoint (days 19-21, D21), completion (days 38-42, D42), and four weeks post-EBRT (days 68-72, D72). Gene expression profiling using microarray analysis was performed from peripheral blood and confirmatory qPCR and protein (ELISA) analyses verified the microarray results. Correlations between fatigue and gene/protein expressions were determined using a mixed model approach. RESULTS: Microarray data showed significant, differential expression of 463 probesets following EBRT. SNCA had a 2.95-fold change at D21 from baseline. SNCA expression was confirmed by qPCR (p<0.001) and ELISA (p<0.001) over time during EBRT. Fatigue scores were significantly correlated with SNCA gene expression on D14 (r=0.55, p<0.05) and plasma α-synuclein concentrations on D42 of EBRT (r=0.54, p=0.04). CONCLUSION: Fatigue experienced during EBRT may be mediated by α-synuclein overexpression. Alpha-synuclein may serve as a useful biomarker to understand the mechanisms and pathways related to the development of fatigue in this population.


Subject(s)
Fatigue/metabolism , Prostatic Neoplasms/radiotherapy , RNA, Messenger/analysis , Up-Regulation , alpha-Synuclein/metabolism , Adult , Aged , Aged, 80 and over , Case-Control Studies , Enzyme-Linked Immunosorbent Assay , Fatigue/etiology , Gene Expression Profiling , Humans , Inflammation/metabolism , Male , Middle Aged , Prostatic Neoplasms/complications , Real-Time Polymerase Chain Reaction , Time Factors
4.
Hum Mol Genet ; 19(12): 2468-86, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20360305

ABSTRACT

Retinal pigment epithelium (RPE) is a polarized cell layer critical for photoreceptor function and survival. The unique physiology and relationship to the photoreceptors make the RPE a critical determinant of human vision. Therefore, we performed a global expression profiling of native and cultured human fetal and adult RPE and determined a set of highly expressed 'signature' genes by comparing the observed RPE gene profiles to the Novartis expression database (SymAtlas: http://wombat.gnf.org/index.html) of 78 tissues. Using stringent selection criteria of at least 10-fold higher expression in three distinct preparations, we identified 154 RPE signature genes, which were validated by qRT-PCR analysis in RPE and in an independent set of 11 tissues. Several of the highly expressed signature genes encode proteins involved in visual cycle, melanogenesis and cell adhesion and Gene ontology analysis enabled the assignment of RPE signature genes to epithelial channels and transporters (ClCN4, BEST1, SLCA20) or matrix remodeling (TIMP3, COL8A2). Fifteen RPE signature genes were associated with known ophthalmic diseases, and 25 others were mapped to regions of disease loci. An evaluation of the RPE signature genes in a recently completed AMD genomewide association (GWA) data set revealed that TIMP3, GRAMD3, PITPNA and CHRNA3 signature genes may have potential roles in AMD pathogenesis and deserve further examination. We propose that RPE signature genes are excellent candidates for retinal diseases and for physiological investigations (e.g. dopachrome tautomerase in melanogenesis). The RPE signature gene set should allow the validation of RPE-like cells derived from human embryonic or induced pluripotent stem cells for cell-based therapies of degenerative retinal diseases.


Subject(s)
Gene Expression Profiling , Gene Expression , Macular Degeneration/genetics , Retinal Pigment Epithelium/metabolism , Adult , Amino Acid Sequence , Cells, Cultured , Genome-Wide Association Study , Humans , Intramolecular Oxidoreductases/genetics , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Retinal Pigment Epithelium/cytology , Retinal Pigment Epithelium/embryology
SELECTION OF CITATIONS
SEARCH DETAIL
...