Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 15: 1358191, 2024.
Article in English | MEDLINE | ID: mdl-38505710

ABSTRACT

Introduction: In recent years, a surge of interest in high-intensity training methods, associated with "cross" modalities has emerged as a promising approach for improving performance and overall health. Therefore, the main aim of this study was to compare the acute effects on heart rate, mean propulsive velocity and intra and inter-set velocity loss in "Cross" modalities. Materials and methods: Twelve athletes, 10 men's and 2 women's (age: 31.5 ± 6.74 years; height: 174.17 ± 6.05 cm; weight: 75.34 ± 7.16 kg) with at least 1 year of experience in "cross" training. The participants performed three different "cross" modalities, Rounds for Time (RFT), Every Minute on the Minute (EMOM) and As Many Rounds As Possible (AMRAP) across three separate days. In each modality participants carried out 10 repetitions of squat, pull-ups, and shoulder press with difference rates of work-rest. Mean propulsive velocity (MPV) and heart rate (HR) were recorded and analysed for each athlete. Repeated measures one-way ANOVA and repeated measures two-way ANOVA were performed to analyse the differences between modalities and subjects. Besides, a Bonferroni post hoc analysis was carried out to assess the differences between modalities in each subject. Results: Significant differences in MPV were observed among the modalities. The comparisons between RFT and AMRAP, as well as EMOM and AMRAP, revealed lower MPV in the AMRAP modality (p < 0.01). RFT exhibited the greatest intra-set velocity loss, while EMOM showed the least, with significant distinctions (p < 0.01) between them. Furthermore, significant differences in the HR results were noted among all modalities (p < 0.05). Conclusion: Findings consistently identify the AMRAP modality as having the lowest MPV values due to its prolonged duration, promoting self-regulated tempo for optimal performance and technique, while the RFT modality exhibits higher fatigue and intra-set MPV losses. These insights into propulsive velocity, intensity, fatigue, and pacing across various "Cross" modalities provide valuable guidance for athletes and trainers seeking to enhance their exercise programs.

2.
Nutrients ; 15(3)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36771365

ABSTRACT

BACKGROUND: The aims of this study were to analyse the effect of creatine supplementation on the performance improvement in a bench pressing (BP) strength test of muscle failure and to evaluate muscle fatigue and metabolic stress 20 min after the exercise. METHODS: Fifty young and healthy individuals were randomly assigned to a creatine group (n = 25) or a placebo group (n = 25). Three exercise sessions were carried out, with one week of rest between them. In the first week, a progressive load BP test was performed until the individuals reached the one repetition maximum (1RM) in order to for us obtain the load-to-velocity ratio of each participant. In the second week, the participants conducted a three-set BP exercise protocol against 70% 1RM, where they performed the maximum number of repetitions (MNR) until muscle failure occurred, with two minutes of rest between the sets. After one week, and following a supplementation period of 7 days, where half of the participants consumed 0.3 g·kg-1·day-1 of creatine monohydrate (CR) and the other half consumed 0.3 g·kg-1·day-1 of placebo (PLA, maltodextrin), the protocol from the second week was repeated. After each set, and up to 20 min after finishing the exercise, the blood lactate concentrations and mean propulsive velocity (MPV) at 1 m·s-1 were measured. RESULTS: The CR group performed a significantly higher number of repetitions in Set 1 (CR = 14.8 repetitions, PLA = 13.6 repetitions, p = 0.006) and Set 2 (CR = 8 repetitions, PLA = 6.7 repetitions, p = 0.006) after supplementation, whereas no significant differences were seen in Set 3 (CR = 5.3 repetitions, PLA = 4.7 repetitions, p = 0.176). However, there was a significant increase in blood lactate at minute 10 (p = 0.003), minute 15 (p = 0.020), and minute 20 (p = 0.015) after the exercise in the post-supplementation period. Similarly, a significant increase was observed in the MPV at 1 m·s-1 in the CR group with respect to the PLA group at 10, 15, and 20 min after the exercise. CONCLUSIONS: Although the creatine supplementation improved the performance in the strength test of muscle failure, the metabolic stress and muscle fatigue values were greater during the 20 min of recovery.


Subject(s)
Creatine , Resistance Training , Male , Humans , Creatine/pharmacology , Muscle, Skeletal , Double-Blind Method , Lactic Acid/pharmacology , Dietary Supplements , Polyesters , Muscle Strength
3.
Article in English | MEDLINE | ID: mdl-35886712

ABSTRACT

BACKGROUND: the aim of this study was to analyse muscle fatigue and metabolic stress at 15 min of recovery after performing two independent sessions of functional fitness training (FFT): a session of strength functional fitness training (FFTstrength) and a session of endurance functional fitness training (FFTendurance). METHODS: eighteen well-trained men conducted two protocols, separated by one week of rest: FFTstrength (3 sets of 21, 15 and 9 repetitions of Thruster with bar + Pull ups) and FFTendurance (3 sets × (30 kcal rowing + 15 kcal assault air bike)). Neuromuscular fatigue and metabolic stress were measured right before, right after and at 10 and 15 min after completing the FFT workout, as well as the mean heart rate (HRmean) and the rating of perceived exertion (RPE) at the end of the FFT. RESULTS: FFTendurance recovered the velocity loss values after 15 min of recovery. On the other hand, FFTstrength only recovered velocity in the 1 m·s-1 Tests in squat (SQ), since the velocity levels were 7% lower in the 1 m·s-1 Tests in military press exercise (MP) after 15 min. CONCLUSIONS: These data indicate that there are specific recovery patterns not only as a function of the exercise and the body regions involved, but also regarding the recovery of neuromuscular and metabolic factors, since both FFT workouts obtained high blood lactate concentrations.


Subject(s)
Physical Exertion , Resistance Training , Athletes , Humans , Lactic Acid , Male , Muscle Fatigue/physiology , Physical Exertion/physiology , Resistance Training/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...