Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 127(3): 942-953, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28165343

ABSTRACT

Primary adrenal insufficiency is life threatening and can present alone or in combination with other comorbidities. Here, we have described a primary adrenal insufficiency syndrome and steroid-resistant nephrotic syndrome caused by loss-of-function mutations in sphingosine-1-phosphate lyase (SGPL1). SGPL1 executes the final decisive step of the sphingolipid breakdown pathway, mediating the irreversible cleavage of the lipid-signaling molecule sphingosine-1-phosphate (S1P). Mutations in other upstream components of the pathway lead to harmful accumulation of lysosomal sphingolipid species, which are associated with a series of conditions known as the sphingolipidoses. In this work, we have identified 4 different homozygous mutations, c.665G>A (p.R222Q), c.1633_1635delTTC (p.F545del), c.261+1G>A (p.S65Rfs*6), and c.7dupA (p.S3Kfs*11), in 5 families with the condition. In total, 8 patients were investigated, some of whom also manifested other features, including ichthyosis, primary hypothyroidism, neurological symptoms, and cryptorchidism. Sgpl1-/- mice recapitulated the main characteristics of the human disease with abnormal adrenal and renal morphology. Sgpl1-/- mice displayed disrupted adrenocortical zonation and defective expression of steroidogenic enzymes as well as renal histology in keeping with a glomerular phenotype. In summary, we have identified SGPL1 mutations in humans that perhaps represent a distinct multisystemic disorder of sphingolipid metabolism.


Subject(s)
Adrenal Insufficiency/congenital , Aldehyde-Lyases/genetics , Homozygote , INDEL Mutation , Mutation, Missense , Nephrotic Syndrome/genetics , Adrenal Glands/enzymology , Adrenal Glands/pathology , Adrenal Insufficiency/enzymology , Adrenal Insufficiency/genetics , Adrenal Insufficiency/pathology , Aldehyde-Lyases/metabolism , Animals , HEK293 Cells , Humans , Kidney/enzymology , Kidney/pathology , Mice , Mice, Knockout , Nephrotic Syndrome/enzymology , Nephrotic Syndrome/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...