Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 8: 4, 2017.
Article in English | MEDLINE | ID: mdl-28167931

ABSTRACT

Aspirin has provided clear benefits to human health. But salicylic acid (SAL) -the main aspirin biometabolite- exerts several effects on eukaryote and prokaryote cells. SAL can affect, for instance, the expression of Staphylococcus aureus virulence factors. SAL can also form complexes with iron cations and it has been shown that different iron chelating molecules diminished the formation of S. aureus biofilm. The aim of this study was to elucidate whether the iron content limitation caused by SAL can modify the S. aureus metabolism and/or metabolic regulators thus changing the expression of the main polysaccharides involved in biofilm formation. The exposure of biofilm to 2 mM SAL induced a 27% reduction in the intracellular free Fe2+ concentration compared with the controls. In addition, SAL depleted 23% of the available free Fe2+ cation in culture media. These moderate iron-limited conditions promoted an intensification of biofilms formed by strain Newman and by S. aureus clinical isolates related to the USA300 and USA100 clones. The slight decrease in iron bioavailability generated by SAL was enough to induce the increase of PIA expression in biofilms formed by methicillin-resistant as well as methicillin-sensitive S. aureus strains. S. aureus did not produce capsular polysaccharide (CP) when it was forming biofilms under any of the experimental conditions tested. Furthermore, SAL diminished aconitase activity and stimulated the lactic fermentation pathway in bacteria forming biofilms. The polysaccharide composition of S. aureus biofilms was examined and FTIR spectroscopic analysis revealed a clear impact of SAL in a codY-dependent manner. Moreover, SAL negatively affected codY transcription in mature biofilms thus relieving the CodY repression of the ica operon. Treatment of mice with SAL induced a significant increase of S aureus colonization. It is suggested that the elevated PIA expression induced by SAL might be responsible for the high nasal colonization observed in mice. SAL-induced biofilms may contribute to S. aureus infection persistence in vegetarian individuals as well as in patients that frequently consume aspirin.

2.
Int J Microbiol ; 2012: 468539, 2012.
Article in English | MEDLINE | ID: mdl-22927858

ABSTRACT

Staphylococcus aureus nasal carriage is a risk factor for individuals suffering from trauma, surgical procedures, invasive devices, and/or decreased immunity. Recently, we demonstrated that artificial nasal colonization with an attenuated S. aureus mutant reduced by bacterial interference with the colonization of pathogenic strains of S. aureus. This could be an optional tool to diminish the rate of S. aureus infections in hospitalized patients. The aim of this study was to construct a safe ΔaroA mutant of S. aureus and to discriminate it from nasal colonizing and osteomyelitis S. aureus isolates by SmaI pulsed-field gel electrophoresis (PFGE) typing. The ΔaroA mutant, named RD17, exhibited an LD(50) (3.2 × 10(6) colony-forming unit (CFU)) significantly higher than that of the parental strain (2.2 × 10(3) CFU). The colony number of the RD17 mutants recovered from nares of leukopenic mice was similar to that observed in the animals of the control group. Therefore, the ΔaroA mutant was demonstrated to be safe due to maintaining low growth levels in the nares regardless of immune status of the animals. PFGE typing allowed the unequivocal identification of the S. aureus and differentiation of aroA mutants in nasal colonizing and osteomyelitis isolates. This information could be important to discriminate endogenous infections from laboratory strains of S. aureus.

3.
Microbes Infect ; 13(12-13): 1073-80, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21714946

ABSTRACT

One of the virulence factors required by Staphylococcus aureus at the early stages of infection is Eap, a secreted adhesin that binds many host proteins and is upregulated by the two-component regulatory system saeRS. The S. aureus Newman strain harbors a mutation in saeS that is thought to be responsible for the high level of Eap expression in this strain. This study was designed to ascertain whether salicylic acid (SAL) affects the expression of Eap and the internalization of S. aureus into epithelial cells. The strain Newman treated with SAL exhibited increased levels of eap transcription and protein expression. Furthermore, SAL treatment increased the eap promoter activity. SAL treatment enhanced Eap expression in the Newman and in other S. aureus strains that do not carry the mutation in saeS. Internalization of S. aureus eap and sae mutants into the MAC-T epithelial cells was significantly decreased compared with the wild-type counterparts. In conclusion, we demonstrated that a low concentration of SAL increased S. aureus Eap expression possibly due to enhancement of sae. SAL may create the conditions for S. aureus persistence in the host, not only by decreasing the capsular polysaccharide expression as shown before, but also by enhancing Eap expression.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , RNA-Binding Proteins/metabolism , Salicylic Acid/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Animals , Bacterial Proteins/genetics , Cattle , Cell Line , Epithelial Cells/microbiology , Female , Mutation , Promoter Regions, Genetic/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , RNA, Bacterial/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Sequence Analysis, DNA , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcus aureus/genetics , Transcription Factors , Virulence Factors/genetics , Virulence Factors/metabolism
4.
Infect Immun ; 78(3): 1339-44, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20008532

ABSTRACT

Capsular polysaccharides (CP) of serotypes 5 (CP5) and 8 (CP8) are major Staphylococcus aureus virulence factors. Previous studies have shown that salicylic acid (SAL), the main aspirin metabolite, affects the expression of certain bacterial virulence factors. In the present study, we found that S. aureus strain Reynolds (CP5) cultured with SAL was internalized by MAC-T cells in larger numbers than strain Reynolds organisms not exposed to SAL. Furthermore, the internalization of the isogenic nonencapsulated Reynolds strain into MAC-T cells was not significantly affected by preexposure to SAL. Pretreatment of S. aureus strain Newman with SAL also enhanced internalization into MAC-T cells compared with that of untreated control strains. Using strain Newman organisms, we evaluated the activity of the major cap5 promoter, which was significantly decreased upon preexposure to SAL. Diminished transcription of mgrA and upregulation of the saeRS transcript, both global regulators of CP expression, were found in S. aureus cultured in the presence of SAL, as ascertained by real-time PCR analysis. In addition, CP5 production by S. aureus Newman was also decreased by treatment with SAL. Collectively, our data demonstrate that exposure of encapsulated S. aureus strains to low concentrations of SAL reduced CP production, thus unmasking surface adhesins and leading to an increased capacity of staphylococci to invade epithelial cells. The high capacity of internalization of the encapsulated S. aureus strains induced by SAL pretreatment may contribute to the persistence of bacteria in certain hosts.


Subject(s)
Bacterial Capsules/metabolism , Enzyme Inhibitors/pharmacology , Salicylic Acid/pharmacology , Staphylococcus aureus/drug effects , Virulence Factors/antagonists & inhibitors , Bacterial Proteins/biosynthesis , Cell Line , Epithelial Cells/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Humans , Reverse Transcriptase Polymerase Chain Reaction
5.
Infect Immun ; 75(2): 886-91, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17145949

ABSTRACT

Staphylococcus aureus is the bacterium most frequently isolated from milk of bovines with mastitis. Four allelic groups, which interfere with the regulatory activities among the different groups, have been identified in the accessory gene regulator (agr) system. The aim of this study was to ascertain the prevalence of the different agr groups in capsulated and noncapsulated S. aureus bacteria isolated from mastitic bovines in Argentina and whether a given agr group was associated with MAC-T cell invasion and in vivo persistence. Eighty-eight percent of the bovine S. aureus strains were classified in agr group I. The remainder belonged in agr groups II, III, and IV (2, 8, and 2%, respectively). By restriction fragment length polymorphism analysis after PCR amplification of the agr locus variable region, six agr restriction types were identified. All agr group I strains presented a unique allele (A/1), whereas strains from groups II, III, and IV exhibited more diversity. Bovine S. aureus strains defined as being in agr group I (capsulated or noncapsulated) showed significantly increased abilities to be internalized within MAC-T cells, compared with isolates from agr groups II, III, and IV. agr group II or IV S. aureus strains were cleared more efficiently than agr group I strains from the murine mammary gland. The results suggest that agr group I S. aureus strains are more efficiently internalized within epithelial cells and can persist in higher numbers in mammary gland tissue than S. aureus strains classified in agr group II, III, or IV.


Subject(s)
Bacterial Capsules/physiology , Bacterial Proteins/genetics , Epithelial Cells/microbiology , Mastitis, Bovine/microbiology , Staphylococcal Infections/veterinary , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Alleles , Animals , Argentina , Cattle , Cell Line , Colony Count, Microbial , DNA Fingerprinting , DNA, Bacterial/genetics , Mammary Glands, Animal/microbiology , Mice , Polymorphism, Restriction Fragment Length , Staphylococcal Infections/microbiology , Staphylococcus aureus/classification , Staphylococcus aureus/isolation & purification , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...