Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Gels ; 10(8)2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39195067

ABSTRACT

The OphthalMimic is a 3D-printed device that simulates human ocular conditions with artificial lacrimal flow, cul-de-sac area, moving eyelid, and a surface to interact with ophthalmic formulations. All tests with such a device have used a continuous artificial tear flow rate of 1 mL/min for 5 min. Here, we implemented protocol variations regarding the application time and simulated tear flow to increase the test's discrimination and achieve reliable performance results. The new protocols incorporated the previously evaluated 0.2% fluconazole formulations containing or not chitosan as a mucoadhesive component (PLX16CS10 and PLX16, respectively) and novel moxifloxacin 5% formulations, either in a conventional formulation and a microemulsion (CONTROL and NEMOX, respectively). The flow rate was reduced by 50%, and a pre-flow application period was also included to allow formulation interaction with the membrane. The OphthalMimic model was used with both polymeric and hydrogel-based hybrid membranes, including a simulated eyelid. Lowering the flow made it feasible to prolong the testing duration, enhancing device discrimination potential. The hydrogel membrane was adequate for testing nanostructure formulations. The OphthalMimic device demonstrated once again to be a versatile method for evaluating the performance of ophthalmic drug formulations with the potential of reducing the use of animals for experimentation.

2.
Methods ; 230: 21-31, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39074539

ABSTRACT

Envisaging to improve the evaluation of ophthalmic drug products while minimizing the need for animal testing, our group developed the OphthalMimic device, a 3D-printed device that incorporates an artificial lacrimal flow, a cul-de-sac area, a moving eyelid, and a surface that interacts effectively with ophthalmic formulations, thereby providing a close representation of human ocular conditions. An important application of such a device would be its use as a platform for dissolution/release tests that closely mimic in vivo conditions. However, the surface that artificially simulates the cornea should have a higher resistance (10 min) than the previously described polymeric films (5 min). For this key assay upgrade, we describe the process of obtaining and thoroughly characterizing a hydrogel-based hybrid membrane to be used as a platform base to simulate the cornea artificially. Also, the OphthalMimic device suffered design improvements to fit the new membrane and incorporate the moving eyelid. The results confirmed the successful synthesis of the hydrogel components. The membrane's water content (86.25 ± 0.35 %) closely mirrored the human cornea (72 to 85 %). Furthermore, morphological analysis supported the membrane's comparability to the natural cornea. Finally, the performance of different formulations was analysed, demonstrating that the device could differentiate their drainage profile through the viscosity of PLX 14 (79 ± 5 %), PLX 16 (72 ± 4 %), and PLX 20 (57 ± 14 %), and mucoadhesion of PLXCS0.5 (69 ± 1 %), PLX16CS1.0 (65 ± 3 %), PLX16CS1.25 (67 ± 3 %), and the solution (97 ± 8 %). In conclusion, using the hydrogel-based hybrid membrane in the OphthalMimic device represents a significant advancement in the field of ophthalmic drug evaluation, providing a valuable platform for dissolution/release tests. Such a platform aligns with the ethical mandate to reduce animal testing and promises to accelerate the development of safer and more effective ophthalmic drugs.


Subject(s)
Hydrogels , Humans , Hydrogels/chemistry , Ophthalmic Solutions/chemistry , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Administration, Ophthalmic , Membranes, Artificial
3.
Methods ; 228: 1-11, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38759909

ABSTRACT

The necessity of animal-free performance tests for novel ophthalmic formulation screening is challenging. For this, we developed and validated a new device to simulate the dynamics and physical-chemical barriers of the eye for in vitro performance tests of topic ophthalmic formulations. The OphthalMimic is a 3D-printed device with an artificial lacrimal flow, a cul-de-sac area, a support base, and a simulated cornea comprised of a polymeric membrane containing poly-vinyl alcohol 10 % (w/v), gelatin 2.5 % (w/v), and different proportions of mucin and poloxamer, i.e., 1:1 (M1), 1:2 (M2), and 2:1 (M3) w/v, respectively. The support base is designed to move between 0° and 50° to replicate the movement of an eyelid. We challenged the model by testing the residence performance of poloxamer®407 16 % and poloxamer®407 16 % + chitosan 1 % (PLX16CS10) gels containing fluconazole. The test was conducted with a simulated tear flow of 1.0 mL.min-1 for 5 min. The OphthalMimic successfully distinguished PLX16 and PLX16C10 formulations based on their fluconazole drainage (M1: 65 ± 14 % and 27 ± 10 %; M2: 58 ± 6 % and 38 ± 9 %; M3: 56 ± 5 % and 38 ± 18 %). In conclusion, the OphthalMimic is a promising tool for comparing the animal-free performance of ophthalmic formulations.


Subject(s)
Ophthalmic Solutions , Poloxamer , Poloxamer/chemistry , Ophthalmic Solutions/chemistry , Administration, Ophthalmic , Fluconazole/administration & dosage , Printing, Three-Dimensional , Cornea/drug effects , Cornea/metabolism , Animals , Chitosan/chemistry , Animal Testing Alternatives/methods , Tears/chemistry , Humans , Gelatin/chemistry
4.
Pharmaceutics ; 15(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765293

ABSTRACT

Animal models are still used in the research and development of ophthalmic drug products, mainly due to the difficulty in simulating natural physiological conditions with in vitro models, as there is a lack of dynamic protection mechanisms. Therefore, developing alternative ophthalmic models that evaluate drug penetration in the cornea while applying dynamic protection barriers is a contemporary challenge. This study aimed to develop a dynamic ex vivo model using porcine eyes with a simulated lacrimal flow to evaluate the performance of pharmaceutical drug products. A glass donor cell to support a simulated tear flow was designed, optimized, and custom-made. The system was challenged with different formulations (with fluconazole) including excipients with different viscosities (poloxamer 407) and mucoadhesive properties (chitosan). The results were compared to those obtained from a conventional excised cornea model mounted in Franz-type diffusion cells. The dynamic model could differentiate formulations, while the static model did not, overestimating ex vivo drug penetrated amounts. Hence, the dynamic model with simulated tear flow showed to be a simple and promising new alternative method for the drug penetration of ophthalmic formulations that ultimately can reduce the number of animals used in research.

5.
Gels ; 9(4)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37102881

ABSTRACT

There is a growing interest in innovative products for eyebrow hair loss treatment with fewer adverse effects. Nevertheless, a fundamental formulation aspect of preventing the fragile skin from the ocular region from being irritated is that the formulations remain restricted to the application region and do not run off. Consequently, the methods and protocols in drug delivery scientific research must be adapted to fulfill such performance analysis demand. Thus, this work aimed to propose a novel protocol to evaluate the in vitro performance of a topical gel formulation with a reduced runoff for minoxidil (MXS) delivery to eyebrows. MXS was formulated with 16% poloxamer 407 (PLX) and 0.4% of hydroxypropyl methylcellulose (HPMC). The sol/gel transition temperature, viscosity at 25 °C, and formulation runoff distance on the skin were evaluated to characterize the formulation. The release profile and skin permeation were evaluated in Franz vertical diffusion cells for 12 h and compared to a control formulation (4% PLX and 0.7% HPMC). Then, the formulation's performance at promoting minoxidil skin penetration with minimum runoff was evaluated in a vertical custom-made permeation template (divided into three areas: superior, middle, and inferior). The MXS release profile from the test formulation was comparable to that from the MXS solution and the control formulation. There was also no difference in the MXS amount that penetrated the skin in the permeation experiments in Franz diffusion cells using the different formulations (p > 0.05). However, the test formulation demonstrated a localized MXS delivery at the application site in the vertical permeation experiment. In conclusion, the proposed protocol could differentiate the test formulation from the control, attesting to its better performance in efficiently delivering MXS to the site of interest (middle third of application). The vertical protocol can be easily employed to evaluate other gels with a drip-free appeal.

6.
Carbohydr Polym ; 302: 120420, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36604082

ABSTRACT

This work aimed to evaluate poly(pseudo)rotaxanes (PPRs) potential for vaginal antifungal delivery. For this, PPRs containing terbinafine (TB) 2 % were obtained using two small surfactants, Kolliphor® RH40 and Gelucire® 48/16, and different α-cyclodextrin (α-CD) concentrations (5 and 10 %). PPRs were characterized by their physicochemical characteristics, irritation, and mucoadhesion capabilities. Formulations' performance was assessed in a vertical penetration model, which uses ex vivo entire porcine vagina. Conventional penetration experiments with excised vaginal tissue were performed as a control. Results showed all formulations were non-irritant according to the HET-CAM test. Furthermore, PPRs with 10 % αCD showed superior mucoadhesion (p < 0.05). Conventional horizontal penetration studies could not differentiate formulations (p > 0.05). However, PPRs with 10 % αCD presented a better performance in vertical ex vivo studies, achieving higher drug penetration into the vaginal mucosa (p < 0.05), which is probably related to the formulation's prolonged residence time. In addition, the antifungal activity of the formulations was maintained against Candida albicans and C. glabrata cultures. More importantly, the formulation's viscosity and drug delivery control had no negative impact on the antifungal activity. In conclusion, the best performance in a more realistic model evidenced the remarkable potential of PPRs for vaginal drug delivery.


Subject(s)
Rotaxanes , alpha-Cyclodextrins , Female , Animals , Swine , Antifungal Agents/chemistry , Rotaxanes/chemistry , Vagina , Candida albicans , Mucous Membrane
SELECTION OF CITATIONS
SEARCH DETAIL