Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(9): e04948, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995628

ABSTRACT

Eragrostiella brachyphylla is an angiosperm desiccation-tolerant resurrection plant, which can survive during desiccation in the air-dry state and recover completely on availability of water. The present study was conducted to understand the vegetative desiccation tolerance of Eragrostiella brachyphylla by evaluating its ability to recover the physiological, biochemical and morphological functions post desiccation. In order to understand the responses of Eragrostiella brachyphylla to desiccation and subsequent rehydration experiments were conducted in the hydrated state (HS), desiccated state (DS) and rehydrated state (RS). Scanning electron microscopy revealed significant changes between the three stages in the internal ultra-structures of leaves and stems. Compared to the other states, photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophylland total carotenoid contents decreased significantly in the desiccated state. Superoxide radical (O2•-) content also increased, resulting in an oxidative burst during desiccation. Consequently, antioxidant enzymes such as catalase (CAT) superoxide dismutase (SOD) peroxidase (APX) and glutathione reductase (GR) activities were found to be significantly elevated in the desiccated state to avoid oxidative damage. Increased malondialdehyde (MDA) content and relative electrolyte leakage (REL) during desiccation provide evidence for membrane damage and loss of cell-wall integrity. During desiccation, the contents of osmolytes represented by sucrose and proline were found to increase to maintain cell structure integrity. After rehydration, all physiological, biochemical and morphological properties remain unchanged or slightly changed when compared to the hydrated state. Hence, we believe that these unique adaptations contribute to the remarkable desiccation-tolerance property of this plant.

2.
Scientifica (Cairo) ; 2018: 9464592, 2018.
Article in English | MEDLINE | ID: mdl-30046509

ABSTRACT

Resurrection plants possess a unique ability to counteract desiccation stress. Desiccation tolerance (DT) is a very complex multigenic and multifactorial process comprising a combination of physiological, morphological, cellular, genomic, transcriptomic, proteomic, and metabolic processes. Modification in the sugar composition of the hemicellulosic fraction of the cell wall is detected during dehydration. An important change is a decrease of glucose in the hemicellulosic fraction during dehydration that can reflect a modification of the xyloglucan structure. The expansins might also be involved in cell wall flexibility during drying and disrupt hydrogen bonds between polymers during rehydration of the cell wall. Cleavages by xyloglucan-modifying enzymes release the tightly bound xyloglucan-cellulose network, thus increasing cell wall flexibility required for cell wall folding upon desiccation. Changes in hydroxyproline-rich glycoproteins (HRGPs) such as arabinogalactan proteins (AGPs) are also observed during desiccation and rehydration processes. It has also been observed that significant alterations in the process of photosynthesis and photosystem (PS) II activity along with changes in the antioxidant enzyme system also increased the cell wall and membrane fluidity resulting in DT. Similarly, recent data show a major role of ABA, LEA proteins, and small regulatory RNA in regulating DT responses. Current progress in "-omic" technologies has enabled quantitative monitoring of the plethora of biological molecules in a high throughput routine, making it possible to compare their levels between desiccation-sensitive and DT species. In this review, we present a comprehensive overview of structural, physiological, cellular, molecular, and global responses involved in desiccation tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...