Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38659823

ABSTRACT

The phenomenon of active trans-membrane water cycling (AWC) has emerged in little over a decade. Here, we consider H2O transport across cell membranes from the origins of its study. Historically, trans-membrane water transport processes were classified into: A) compensating bidirectional fluxes ("exchange"), and B) unidirectional flux ("net flow") categories. Recent literature molecular structure determinations and molecular dynamic (MD) simulations indicate probably all the many different hydrophilic substrate membrane co-transporters have membrane-spanning hydrophilic pathways and co-transport water along with their substrates, and that they individually catalyze category A and/or B water flux processes, although usually not simultaneously. The AWC name signifies that, integrated over the all the cell's co-transporters, the rate of homeostatic, bidirectional trans-cytolemmal water exchange (category A) is synchronized with the metabolic rate of the crucial Na+,K+-ATPase (NKA) enzyme. A literature survey indicates the stoichiometric (category B) water/substrate ratios of individual co-transporters are often very large. The MD simulations also suggest how different co-transporter reactions can be kinetically coupled molecularly. Is this (Na+,K+-ATPase rate-synchronized) cycling futile, or is it consequential? Conservatively representative literature metabolomic and proteinomic results enable comprehensive free energy analyses of the many transport reactions with known water stoichiometries. Free energy calculations, using literature intracellular pressure (Pi) values reveals there is an outward trans-membrane H2O barochemical gradient of magnitude comparable to that of the well-known inward Na+ electrochemical gradient. For most co-influxers, these gradients are finely balanced to maintain intracellular metabolite concentration values near their consuming enzyme Michaelis constants. The thermodynamic analyses include glucose, glutamate-, gamma-aminobutyric acid (GABA), and lactate- transporters. 2%-4% Pi alterations can lead to disastrous concentration levels. For the neurotransmitters glutamate- and GABA, very small astrocytic Pi changes can allow/disallow synaptic transmission. Unlike the Na+ and K+ electrochemical steady-states, the H2O barochemical steady-state is in (or near) chemical equilibrium. The analyses show why the presence of aquaporins (AQPs) does not dissipate the trans-membrane pressure gradient. A feedback loop inherent in the opposing Na+ electrochemical and H2O barochemical gradients regulates AQP-catalyzed water flux as an integral AWC aspect. These results also require a re-consideration of the underlying nature of Pi. Active trans-membrane water cycling is not futile, but is inherent to the cell's "NKA system" - a new, fundamental aspect of biology.

2.
NMR Biomed ; 36(1): e4781, 2023 01.
Article in English | MEDLINE | ID: mdl-35654608

ABSTRACT

Evidence mounts that the steady-state cellular water efflux (unidirectional) first-order rate constant (kio [s-1 ]) magnitude reflects the ongoing, cellular metabolic rate of the cytolemmal Na+ , K+ -ATPase (NKA), c MRNKA (pmol [ATP consumed by NKA]/s/cell), perhaps biology's most vital enzyme. Optimal 1 H2 O MR kio determinations require paramagnetic contrast agents (CAs) in model systems. However, results suggest that the homeostatic metabolic kio biomarker magnitude in vivo is often too large to be reached with allowable or possible CA living tissue distributions. Thus, we seek a noninvasive (CA-free) method to determine kio in vivo. Because membrane water permeability has long been considered important in tissue water diffusion, we turn to the well-known diffusion-weighted MRI (DWI) modality. To analyze the diffusion tensor magnitude, we use a parsimoniously primitive model featuring Monte Carlo simulations of water diffusion in virtual ensembles comprising water-filled and -immersed randomly sized/shaped contracted Voronoi cells. We find this requires two additional, cytometric properties: the mean cell volume (V [pL]) and the cell number density (ρ [cells/µL]), important biomarkers in their own right. We call this approach metabolic activity diffusion imaging (MADI). We simulate water molecule displacements and transverse MR signal decays covering the entirety of b-space from pure water (ρ = V = 0; kio undefined; diffusion coefficient, D0 ) to zero diffusion. The MADI model confirms that, in compartmented spaces with semipermeable boundaries, diffusion cannot be described as Gaussian: the nanoscopic D (Dn ) is diffusion time-dependent, a manifestation of the "diffusion dispersion". When the "well-mixed" (steady-state) condition is reached, diffusion becomes limited, mainly by the probabilities of (1) encountering (ρ, V), and (2) permeating (kio ) cytoplasmic membranes, and less so by Dn magnitudes. Importantly, for spaces with large area/volume (A/V; claustrophobia) ratios, this can happen in less than a millisecond. The model matches literature experimental data well, with implications for DWI interpretations.


Subject(s)
Diagnostic Imaging , Water , Activation, Metabolic
3.
Magn Reson (Gott) ; 2(2): 689-698, 2021.
Article in English | MEDLINE | ID: mdl-37905210

ABSTRACT

The relationship between the classic magnetic resonance density matrix relaxation theories of Bloch and Hubbard and the modern Lindbladian master equation methods are explored. These classic theories are in full agreement with the latest results obtained by the modern methods. A careful scrutiny shows that this also holds true for Redfield's later treatment, offered in 1965. The early contributions of Bloch and Hubbard to rotating-frame relaxation theory are also highlighted. Taken together, these seminal efforts of Bloch and Hubbard can enjoy a new birth of contemporary relevance in magnetic resonance.

4.
NMR Biomed ; 33(5): e4284, 2020 05.
Article in English | MEDLINE | ID: mdl-32125050

ABSTRACT

T1ρ relaxation imaging is a quantitative imaging technique that has been used to assess cartilage integrity, liver fibrosis, tumors, cardiac infarction, and Alzheimer's disease. T1 , T2 , and T1ρ relaxation time constants have each demonstrated different degrees of sensitivity to several markers of fibrosis and inflammation, allowing for a potential multi-parametric approach to tissue quantification. Traditional magnetic resonance fingerprinting (MRF) has been shown to provide quick, quantitative mapping of T1 and T2 relaxation time constants. In this study, T1ρ relaxation is added to the MRF framework using spin lock preparations. An MRF sequence involving an RF-spoiled sequence with TR , flip angle, T1ρ , and T2 preparation variation is described. The sequence is then calibrated against conventional T1 , T2 , and T1ρ relaxation mapping techniques in agar phantoms and the abdomens of four healthy volunteers. Strong intraclass correlation coefficients (ICC > 0.9) were found between conventional and MRF sequences in phantoms and also in healthy volunteers (ICC > 0.8). The highest ICC correlation values were seen in T1 , followed by T1ρ and then T2 . In this study, T1ρ relaxation has been incorporated into the MRF framework by using spin lock preparations, while still fitting for T1 and T2 relaxation time constants. The acquisition of these parameters within a single breath hold in the abdomen alleviates the issues of movement between breath holds in conventional techniques.


Subject(s)
Magnetic Resonance Imaging , Adult , Female , Humans , Male , Phantoms, Imaging
5.
J Magn Reson ; 270: 40-46, 2016 09.
Article in English | MEDLINE | ID: mdl-27393892

ABSTRACT

A thorough exposition and analysis of the role of the Lorentz sphere in magnetic resonance is presented from the fundamental standpoint of macroscopic magnetostatics. The analysis will be useful to those interested in understanding susceptibility and chemical shift contributions to frequency shifts in magnetic resonance. Though the topic is mature, recent research on white matter shifts in the brain promotes the notion of replacing the Lorentz sphere with a generalized Lorentzian cylinder, and has put into question the long standing spherical approach when elongated structures are present. The cavity shape issue can be resolved by applying Helmholtz's theorem, which can be expressed in a differential and an integral formulation. The general validity of the Lorentz sphere for any situation is confirmed. Furthermore, a clear exposition of the "generalized approach" is offered, using the language of Lorentz's theory. With the rehabilitation of the Lorentz sphere settled, one must consider alternative contributions to white matter shifts and a likely candidate is the effect of molecular environment on chemical shifts.


Subject(s)
Brain/diagnostic imaging , Magnetic Resonance Imaging , White Matter/diagnostic imaging , Humans
6.
J Magn Reson ; 265: 45-51, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26852417

ABSTRACT

A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...