Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Oral Maxillofac Surg ; 53(5): 455-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25836048

ABSTRACT

We compared two methods of planning virtual alveolar moulding as the first step in nasoalveolar moulding to provide the basis for an automated process to fabricate nasoalveolar moulding appliances by using computer-assisted design and computer-aided manufacturing (CAD/CAM). First, the initial intraoral casts taken from seven newborn babies with complete unilateral cleft lip and palate were digitised. This was repeated for the target models after conventional nasoalveolar moulding had been completed. The initial digital model for each patient was then virtually modified by two different modelling techniques to achieve the corresponding target model: parametric and freeform modelling with the software Geomagic(®). The digitally-remodelled casts were quantitatively compared with the actual target model for each patient, and the comparison between the two modified models and the target model showed that freeform modelling of the initial cast was successful (mean (SD) deviation n=7, +0.723 (0.148) to -0.694 (0.157)mm) but needed continuous orientation and was difficult to automate. The results from the parametric modelling (mean (SD) deviation, n=7, +1.168 (0.185) to -1.067 (0.221)mm) were not as good as those from freeform modelling. During parametric modelling, we found some irregularities on the surface, and transverse growth of the maxilla was not accounted for. However, this method seems to be the right one as far as automation is concerned. In addition, an external algorithm must be implemented because the function of the commercial software is limited.


Subject(s)
Cleft Lip/therapy , Cleft Palate/therapy , Computer-Aided Design , Orthopedic Procedures/instrumentation , Patient Care Planning , Therapy, Computer-Assisted , User-Computer Interface , Alveolar Process/pathology , Anatomic Landmarks/pathology , Cleft Lip/pathology , Cleft Palate/pathology , Computer Simulation , Dental Arch/pathology , Equipment Design , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Infant, Newborn , Maxilla/pathology , Models, Dental , Surface Properties
2.
Article in English | MEDLINE | ID: mdl-24125372

ABSTRACT

We report on experiments in which the Texas Petawatt laser irradiated a mixture of deuterium or deuterated methane clusters and helium-3 gas, generating three types of nuclear fusion reactions: D(d,^{3}He)n, D(d,t)p, and ^{3}He(d,p)^{4}He. We measured the yields of fusion neutrons and protons from these reactions and found them to agree with yields based on a simple cylindrical plasma model using known cross sections and measured plasma parameters. Within our measurement errors, the fusion products were isotropically distributed. Plasma temperatures, important for the cross sections, were determined by two independent methods: (1) deuterium ion time of flight and (2) utilizing the ratio of neutron yield to proton yield from D(d,^{3}He)n and ^{3}He(d,p)^{4}He reactions, respectively. This experiment produced the highest ion temperature ever achieved with laser-irradiated deuterium clusters.

3.
Phys Rev Lett ; 111(8): 082502, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-24010431

ABSTRACT

The plasma astrophysical S factor for the 3He(d,p)4He fusion reaction was measured for the first time at temperatures of few keV, using the interaction of intense ultrafast laser pulses with molecular deuterium clusters mixed with 3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the gas target in order to allow the measurement of the cross section for the 3He(d,p)4He reaction. The yield of 14.7 MeV protons from the 3He(d,p)4He reaction was measured in order to extract the astrophysical S factor at low energies. Our result is in agreement with other S factor parametrizations found in the literature.

4.
Phys Rev Lett ; 111(5): 055002, 2013 Aug 02.
Article in English | MEDLINE | ID: mdl-23952411

ABSTRACT

Two different methods have been employed to determine the plasma temperature in a laser-cluster fusion experiment on the Texas Petawatt laser. In the first, the temperature was derived from time-of-flight data of deuterium ions ejected from exploding D(2) or CD(4) clusters. In the second, the temperature was measured from the ratio of the rates of two different nuclear fusion reactions occurring in the plasma at the same time: D(d,(3)He)n and (3)He(d,p)(4)He. The temperatures determined by these two methods agree well, which indicates that (i) the ion energy distribution is not significantly distorted when ions travel in the disassembling plasma; (ii) the kinetic energy of deuterium ions, especially the "hottest part" responsible for nuclear fusion, is well described by a near-Maxwellian distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...