Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EURASIP J Wirel Commun Netw ; 2021(1): 195, 2021.
Article in English | MEDLINE | ID: mdl-34899876

ABSTRACT

Private networks will play a key role in 5G and beyond to enable smart factories with the required better deployment, operation and flexible usage of available resource and infrastructure. 5G private networks will offer a lean and agile solution to effectively deploy and operate services with stringent and heterogeneous constraints in terms of reliability, latency, re-configurability and re-deployment of resources as well as issues related to governance and ownership of 5G components, and elements. In this paper, we present a novel approach to operator models, specifically targeting 5G and beyond private networks. We apply the proposed operator models to different network architecture options and to a selection of relevant use cases offering mixed private-public network operator governance and ownership. Moreover, several key enabling technologies have been identified for 5G private networks. Before the deployment, stakeholders should consider spectrum allocation and on-site channel measurements in order to fully understand the propagation characteristic of a given environment and to set up end-to-end system parameters. During the deployment, a monitoring tools will support to validate the deployment and to make sure that the end-to-end system meet the target KPI. Finally, some optimization can be made individually for service placement, network slicing and orchestration or jointly at radio access, multi-access edge computing or core network level.

2.
IEEE Trans Signal Process ; 68: 2870-2882, 2020.
Article in English | MEDLINE | ID: mdl-33746467

ABSTRACT

Graphs are pervasive in different fields unveiling complex relationships between data. Two major graph-based learning tasks are topology identification and inference of signals over graphs. Among the possible models to explain data interdependencies, structural equation models (SEMs) accommodate a gamut of applications involving topology identification. Obtaining conventional SEMs though requires measurements across nodes. On the other hand, typical signal inference approaches 'blindly trust' a given nominal topology. In practice however, signal or topology perturbations may be present in both tasks, due to model mismatch, outliers, outages or adversarial behavior. To cope with such perturbations, this work introduces a regularized total least-squares (TLS) approach and iterative algorithms with convergence guarantees to solve both tasks. Further generalizations are also considered relying on structured and/or weighted TLS when extra prior information on the perturbation is available. Analyses with simulated and real data corroborate the effectiveness of the novel TLS-based approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...