Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37112314

ABSTRACT

Robust methods to compute tissue displacements in optical coherence elastography (OCE) data are paramount, as they play a significant role in the accuracy of tissue elastic properties estimation. In this study, the accuracy of different phase estimators was evaluated on simulated OCE data, where the displacements can be accurately set, and on real data. Displacement (∆d) estimates were computed from (i) the original interferogram data (Δφori) and two phase-invariant mathematical manipulations of the interferogram: (ii) its first-order derivative (Δφd) and (iii) its integral (Δφint). We observed a dependence of the phase difference estimation accuracy on the initial depth location of the scatterer and the magnitude of the tissue displacement. However, by combining the three phase-difference estimates (Δdav), the error in phase difference estimation could be minimized. By using Δdav, the median root-mean-square error associated with displacement prediction in simulated OCE data was reduced by 85% and 70% in data with and without noise, respectively, in relation to the traditional estimate. Furthermore, a modest improvement in the minimum detectable displacement in real OCE data was also observed, particularly in data with low signal-to-noise ratios. The feasibility of using Δdav to estimate agarose phantoms' Young's modulus is illustrated.


Subject(s)
Elasticity Imaging Techniques , Tomography, Optical Coherence , Tomography, Optical Coherence/methods , Elasticity Imaging Techniques/methods , Elastic Modulus , Phantoms, Imaging
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 8147-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26738185

ABSTRACT

We present a methodology to assess cell level alterations on the human retina responsible for functional changes observable in the Optical Coherence Tomography data in healthy ageing and in disease conditions, in the absence of structural alterations. The methodology is based in a 3D multilayer Monte Carlo computational model of the human retina. The optical properties of each layer are obtained by solving the Maxwell's equations for 3D domains representative of small regions of those layers, using a Discontinuous Galerkin Finite Element Method (DG-FEM). Here we present the DG-FEM Maxwell 3D model and its validation against Mie's theory for spherical scatterers. We also present an application of our methodology to the assessment of cell level alterations responsible for the OCT data in Diabetic Macular Edema. It was possible to identify which alterations are responsible for the changes observed in the OCT scans of the diseased groups.


Subject(s)
Retina/diagnostic imaging , Tomography, Optical Coherence , Aged , Diabetic Retinopathy/diagnosis , Humans , Macular Edema , Models, Theoretical
3.
Opt Express ; 18(23): 24048-59, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21164752

ABSTRACT

Despeckling optical coherence tomograms from the human retina is a fundamental step to a better diagnosis or as a preprocessing stage for retinal layer segmentation. Both of these applications are particularly important in monitoring the progression of retinal disorders. In this study we propose a new formulation for a well-known nonlinear complex diffusion filter. A regularization factor is now made to be dependent on data, and the process itself is now an adaptive one. Experimental results making use of synthetic data show the good performance of the proposed formulation by achieving better quantitative results and increasing computation speed.


Subject(s)
Diffusion , Tomography, Optical Coherence/instrumentation , Tomography, Optical Coherence/methods , Fundus Oculi , Humans , Nonlinear Dynamics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...