Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Res Protoc ; 10(10): e26816, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34528885

ABSTRACT

BACKGROUND: The number of solid organ transplants in Canada has increased 33% over the past decade. Hospital readmissions are common within the first year after transplant and are linked to increased morbidity and mortality. Nearly half of these admissions to the hospital appear to be preventable. Mobile health (mHealth) technologies hold promise to reduce admission to the hospital and improve patient outcomes, as they allow real-time monitoring and timely clinical intervention. OBJECTIVE: This study aims to determine whether an innovative mHealth intervention can reduce hospital readmission and unscheduled visits to the emergency department or transplant clinic. Our second objective is to assess the use of clinical and continuous ambulatory physiologic data to develop machine learning algorithms to predict the risk of infection, organ rejection, and early mortality in adult heart, kidney, and liver transplant recipients. METHODS: Remote Mobile Outpatient Monitoring in Transplant (Reboot) 2.0 is a two-phased single-center study to be conducted at the University Health Network in Toronto, Canada. Phase one will consist of a 1-year concealed randomized controlled trial of 400 adult heart, kidney, and liver transplant recipients. Participants will be randomized to receive either personalized communication using an mHealth app in addition to standard of care phone communication (intervention group) or standard of care communication only (control group). In phase two, the prior collected data set will be used to develop machine learning algorithms to identify early markers of rejection, infection, and graft dysfunction posttransplantation. The primary outcome will be a composite of any unscheduled hospital admission, visits to the emergency department or transplant clinic, following discharge from the index admission. Secondary outcomes will include patient-reported outcomes using validated self-administered questionnaires, 1-year graft survival rate, 1-year patient survival rate, and the number of standard of care phone voice messages. RESULTS: At the time of this paper's completion, no results are available. CONCLUSIONS: Building from previous work, this project will aim to leverage an innovative mHealth app to improve outcomes and reduce hospital readmission in adult solid organ transplant recipients. Additionally, the development of machine learning algorithms to better predict adverse health outcomes will allow for personalized medicine to tailor clinician-patient interactions and mitigate the health care burden of a growing patient population. TRIAL REGISTRATION: ClinicalTrials.gov NCT04721288; https://www.clinicaltrials.gov/ct2/show/NCT04721288. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/26816.

2.
Microorganisms ; 8(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963268

ABSTRACT

Organic contaminants (OCs), such as pharmaceuticals, personal care products, flame retardants, and plasticisers, are societally ubiquitous, environmentally hazardous, and structurally diverse chemical compounds whose recalcitrance to conventional wastewater treatment necessitates the development of more effective remedial alternatives. The engineered application of ligninolytic oxidoreductase fungal enzymes, principally white-rot laccase, lignin peroxidase, and manganese peroxidase, has been identified as a particularly promising approach for OC remediation due to their strong oxidative power, broad substrate specificity, low energy consumption, environmental benignity, and cultivability from lignocellulosic waste. By applying an understanding of the mechanisms by which substrate properties influence enzyme activity, a set of semi-quantitative physicochemical criteria (redox potential, hydrophobicity, steric bulk and pKa) was formulated, against which the oxidoreductase degradation susceptibility of twenty-five representative OCs was assessed. Ionisable, compact, and electron donating group (EDG) rich pharmaceuticals and antibiotics were judged the most susceptible, whilst hydrophilic, bulky, and electron withdrawing group (EWG) rich polyhalogenated compounds were judged the least susceptible. OC susceptibility scores were in general agreement with the removal rates reported for experimental oxidoreductase treatments (R2 = 0.60). Based on this fundamental knowledge, and recent developments in enzyme immobilisation techniques, microbiological enzymic treatment strategies are proposed to formulate a new generation of biological wastewater treatment processes for the biodegradation of environmentally challenging OC compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...