Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 979825, 2022.
Article in English | MEDLINE | ID: mdl-36225383

ABSTRACT

Biological soil crusts (biocrusts) are critical components of dryland and other ecosystems worldwide, and are increasingly recognized as novel model ecosystems from which more general principles of ecology can be elucidated. Biocrusts are often diverse communities, comprised of both eukaryotic and prokaryotic organisms with a range of metabolic lifestyles that enable the fixation of atmospheric carbon and nitrogen. However, how the function of these biocrust communities varies with succession is incompletely characterized, especially in comparison to more familiar terrestrial ecosystem types such as forests. We conducted a greenhouse experiment to investigate how community composition and soil-atmosphere trace gas fluxes of CO2, CH4, and N2O varied from early-successional light cyanobacterial biocrusts to mid-successional dark cyanobacteria biocrusts and late-successional moss-lichen biocrusts and as biocrusts of each successional stage matured. Cover type richness increased as biocrusts developed, and richness was generally highest in the late-successional moss-lichen biocrusts. Microbial community composition varied in relation to successional stage, but microbial diversity did not differ significantly among stages. Net photosynthetic uptake of CO2 by each biocrust type also increased as biocrusts developed but tended to be moderately greater (by up to ≈25%) for the mid-successional dark cyanobacteria biocrusts than the light cyanobacterial biocrusts or the moss-lichen biocrusts. Rates of soil C accumulation were highest for the dark cyanobacteria biocrusts and light cyanobacteria biocrusts, and lowest for the moss-lichen biocrusts and bare soil controls. Biocrust CH4 and N2O fluxes were not consistently distinguishable from the same fluxes measured from bare soil controls; the measured rates were also substantially lower than have been reported in previous biocrust studies. Our experiment, which uniquely used greenhouse-grown biocrusts to manipulate community composition and accelerate biocrust development, shows how biocrust function varies along a dynamic gradient of biocrust successional stages.

2.
Ecol Appl ; 30(7): e02159, 2020 10.
Article in English | MEDLINE | ID: mdl-32365250

ABSTRACT

Ecologists are increasingly familiar with Bayesian statistical modeling and its associated Markov chain Monte Carlo (MCMC) methodology to infer about or to discover interesting effects in data. The complexity of ecological data often suggests implementation of (statistical) models with a commensurately rich structure of effects, including crossed or nested (i.e., hierarchical or multi-level) structures of fixed and/or random effects. Yet, our experience suggests that most ecologists are not familiar with subtle but important problems that often arise with such models and with their implementation in popular software. Of foremost consideration for us is the notion of effect identifiability, which generally concerns how well data, models, or implementation approaches inform about, i.e., identify, quantities of interest. In this paper, we focus on implementation pitfalls that potentially misinform subsequent inference, despite otherwise informative data and models. We illustrate the aforementioned issues using random effects regressions on synthetic data. We show how to diagnose identifiability issues and how to remediate these issues with model reparameterization and computational and/or coding practices in popular software, with a focus on JAGS, OpenBUGS, and Stan. We also show how these solutions can be extended to more complex models involving multiple groups of nested, crossed, additive, or multiplicative effects, for models involving random and/or fixed effects. Finally, we provide example code (JAGS/OpenBUGS and Stan) that practitioners can modify and use for their own applications.


Subject(s)
Models, Statistical , Software , Bayes Theorem , Markov Chains , Monte Carlo Method
3.
Ecol Lett ; 18(3): 221-35, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25522778

ABSTRACT

The role of time in ecology has a long history of investigation, but ecologists have largely restricted their attention to the influence of concurrent abiotic conditions on rates and magnitudes of important ecological processes. Recently, however, ecologists have improved their understanding of ecological processes by explicitly considering the effects of antecedent conditions. To broadly help in studying the role of time, we evaluate the length, temporal pattern, and strength of memory with respect to the influence of antecedent conditions on current ecological dynamics. We developed the stochastic antecedent modelling (SAM) framework as a flexible analytic approach for evaluating exogenous and endogenous process components of memory in a system of interest. We designed SAM to be useful in revealing novel insights promoting further study, illustrated in four examples with different degrees of complexity and varying time scales: stomatal conductance, soil respiration, ecosystem productivity, and tree growth. Models with antecedent effects explained an additional 18-28% of response variation compared to models without antecedent effects. Moreover, SAM also enabled identification of potential mechanisms that underlie components of memory, thus revealing temporal properties that are not apparent from traditional treatments of ecological time-series data and facilitating new hypothesis generation and additional research.


Subject(s)
Ecological and Environmental Phenomena , Ecosystem , Models, Biological , Time , Trees , Bayes Theorem , Models, Statistical , Soil , Stochastic Processes
4.
Ecology ; 95(3): 621-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24804443
5.
New Phytol ; 182(2): 541-554, 2009.
Article in English | MEDLINE | ID: mdl-19210723

ABSTRACT

Cavitation of xylem elements diminishes the water transport capacity of plants, and quantifying xylem vulnerability to cavitation is important to understanding plant function. Current approaches to analyzing hydraulic conductivity (K) data to infer vulnerability to cavitation suffer from problems such as the use of potentially unrealistic vulnerability curves, difficulty interpreting parameters in these curves, a statistical framework that ignores sampling design, and an overly simplistic view of uncertainty. This study illustrates how two common curves (exponential-sigmoid and Weibull) can be reparameterized in terms of meaningful parameters: maximum conductivity (k(sat)), water potential (-P) at which percentage loss of conductivity (PLC) =X% (P(X)), and the slope of the PLC curve at P(X) (S(X)), a 'sensitivity' index. We provide a hierarchical Bayesian method for fitting the reparameterized curves to K(H) data. We illustrate the method using data for roots and stems of two populations of Juniperus scopulorum and test for differences in k(sat), P(X), and S(X) between different groups. Two important results emerge from this study. First, the Weibull model is preferred because it produces biologically realistic estimates of PLC near P = 0 MPa. Second, stochastic embolisms contribute an important source of uncertainty that should be included in such analyses.


Subject(s)
Juniperus/physiology , Plant Transpiration/physiology , Water/physiology , Xylem/physiology , Bayes Theorem , Models, Biological , Plant Roots/physiology , Plant Stems/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...