Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurorobot ; 18: 1337608, 2024.
Article in English | MEDLINE | ID: mdl-38405088

ABSTRACT

One of the major problems of today's society is the rapid aging of its population. Life expectancy is increasing, but the quality of life is not. Faced with the growing number of people who require cognitive or physical assistance, new technological tools are emerging to help them. In this article, we present the ADAM robot, a new robot designed for domestic physical assistance. It mainly consists of a mobile base, two arms with grippers and vision systems. All this allows the performance of physical tasks that require navigation and manipulation of the environment. Among ADAM's features are its modularity, its adaptability to indoor environments and its versatility to function as an experimental platform and for service applications. In addition, it is designed to work respecting the user's personal space and is collaborative, so it can learn from experiences taught by them. We present the design of the robot as well as examples of use in domestic environments both alone and in collaboration with other domestic platforms, demonstrating its potential.

2.
Sensors (Basel) ; 22(22)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36433324

ABSTRACT

Mobile robot navigation has been studied for a long time, and it is nowadays widely used in multiple applications. However, it is traditionally focused on two-dimensional geometric characteristics of the environments. There are situations in which robots need to share space with people, so additional aspects, such as social distancing, need to be considered. In this work, an approach for social navigation is presented. A multi-layer model of the environment containing geometric and topological characteristics is built based on the fusion of multiple sensor information. This is later used for navigating the environment considering social distancing from individuals and groups of people. The main novelty is combining fast marching square for path planning and navigation with Gaussian models to represent people. This combination allows to create a continuous representation of the environment from which smooth paths can be extracted and modified according to dynamically captured data. Results prove the practical application of the method on an assistive robot for navigating indoor scenarios, including a behavior for crossing narrow passages. People are efficiently detected and modeled to assure their comfort when robots are around.


Subject(s)
Robotics , Humans , Robotics/methods , Normal Distribution
3.
Sensors (Basel) ; 22(20)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36298332

ABSTRACT

The increasing isolation of the elderly both in their own homes and in care homes has made the problem of caring for elderly people who live alone an urgent priority. This article presents a proposed design for a heterogeneous multirobot system consisting of (i) a small mobile robot to monitor the well-being of elderly people who live alone and suggest activities to keep them positive and active and (ii) a domestic mobile manipulating robot that helps to perform household tasks. The entire system is integrated in an automated home environment (AAL), which also includes a set of low-cost automation sensors, a medical monitoring bracelet and an Android application to propose emotional coaching activities to the person who lives alone. The heterogeneous system uses ROS, IoT technologies, such as Node-RED, and the Home Assistant Platform. Both platforms with the home automation system have been tested over a long period of time and integrated in a real test environment, with good results. The semantic segmentation of the navigation and planning environment in the mobile manipulator for navigation and movement in the manipulation area facilitated the tasks of the later planners. Results about the interactions of users with the applications are presented and the use of artificial intelligence to predict mood is discussed. The experiments support the conclusion that the assistance robot correctly proposes activities, such as calling a relative, exercising, etc., during the day, according to the user's detected emotional state, making this is an innovative proposal aimed at empowering the elderly so that they can be autonomous in their homes and have a good quality of life.


Subject(s)
Artificial Intelligence , Quality of Life , Humans , Aged , Home Environment , Reactive Oxygen Species , Monitoring, Physiologic
4.
Sensors (Basel) ; 22(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35632099

ABSTRACT

Nowadays, most mobile robot applications use two-dimensional LiDAR for indoor mapping, navigation, and low-level scene segmentation. However, single data type maps are not enough in a six degree of freedom world. Multi-LiDAR sensor fusion increments the capability of robots to map on different levels the surrounding environment. It exploits the benefits of several data types, counteracting the cons of each of the sensors. This research introduces several techniques to achieve mapping and navigation through indoor environments. First, a scan matching algorithm based on ICP with distance threshold association counter is used as a multi-objective-like fitness function. Then, with Harmony Search, results are optimized without any previous initial guess or odometry. A global map is then built during SLAM, reducing the accumulated error and demonstrating better results than solo odometry LiDAR matching. As a novelty, both algorithms are implemented in 2D and 3D mapping, overlapping the resulting maps to fuse geometrical information at different heights. Finally, a room segmentation procedure is proposed by analyzing this information, avoiding occlusions that appear in 2D maps, and proving the benefits by implementing a door recognition system. Experiments are conducted in both simulated and real scenarios, proving the performance of the proposed algorithms.


Subject(s)
Robotics , Algorithms , Recognition, Psychology , Robotics/methods
5.
Sensors (Basel) ; 19(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652607

ABSTRACT

Exploration of unknown environments is a fundamental problem in autonomous robotics that deals with the complexity of autonomously traversing an unknown area while acquiring the most important information of the environment. In this work, a mobile robot exploration algorithm for indoor environments is proposed. It combines frontier-based concepts with behavior-based strategies in order to build a topological representation of the environment. Frontier-based approaches assume that, to gain the most information of an environment, the robot has to move to the regions on the boundary between open space and unexplored space. The novelty of this work is in the semantic frontier classification and frontier selection according to a cost-utility function. In addition, a probabilistic loop closure algorithm is proposed to solve cyclic situations. The system outputs a topological map of the free areas of the environment for further navigation. Finally, simulated and real-world experiments have been carried out, their results and the comparison to other state-of-the-art algorithms show the feasibility of the exploration algorithm proposed and the improvement that it offers with regards to execution time and travelled distance.

6.
Sensors (Basel) ; 17(2)2017 Jan 29.
Article in English | MEDLINE | ID: mdl-28146049

ABSTRACT

In this work, a system is developed for semantic labeling of locations based on what people do. This system is useful for semantic navigation of mobile robots. The system differentiates environments according to what people do in them. Background sound, number of people in a room and amount of movement of those people are items to be considered when trying to tell if people are doing different actions. These data are sampled, and it is assumed that people behave differently and perform different actions. A support vector machine is trained with the obtained samples, and therefore, it allows one to identify the room. Finally, the results are discussed and support the hypothesis that the proposed system can help to semantically label a room.

7.
Sensors (Basel) ; 16(8)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27483264

ABSTRACT

To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests.


Subject(s)
Artificial Intelligence , Pattern Recognition, Automated/methods , Robotics , Algorithms , Color , Humans , Support Vector Machine
8.
Sensors (Basel) ; 14(4): 6734-57, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24732101

ABSTRACT

The future of robotics predicts that robots will integrate themselves more every day with human beings and their environments. To achieve this integration, robots need to acquire information about the environment and its objects. There is a big need for algorithms to provide robots with these sort of skills, from the location where objects are needed to accomplish a task up to where these objects are considered as information about the environment. This paper presents a way to provide mobile robots with the ability-skill to detect objets for semantic navigation. This paper aims to use current trends in robotics and at the same time, that can be exported to other platforms. Two methods to detect objects are proposed, contour detection and a descriptor based technique, and both of them are combined to overcome their respective limitations. Finally, the code is tested on a real robot, to prove its accuracy and efficiency.


Subject(s)
Motion , Pattern Recognition, Automated/methods , Robotics , Semantics , Algorithms , Humans , Imaging, Three-Dimensional
9.
Sensors (Basel) ; 14(2): 2476-88, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24504105

ABSTRACT

Nowadays the automobile industry is becoming more and more demanding as far as quality is concerned. Within the wide variety of processes in which this quality must be ensured, those regarding the squeezing of the auto bodywork are especially important due to the fact that the quality of the resulting product is tested manually by experts, leading to inaccuracies of all types. In this paper, an algorithm is proposed for the automated evaluation of the imperfections in the sheets of the bodywork after the squeezing process. The algorithm processes the profile signals from a retroreflective image and characterizes an imperfection. It is based on a convergence criterion that follows the line of the maximum gradient of the imperfection and gives its geometrical characteristics as a result: maximum gradient, length, width, and area.

SELECTION OF CITATIONS
SEARCH DETAIL
...