Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432312

ABSTRACT

A series of six polybenzylic dendrons with an alkynyl focal point were synthesized for their incorporation to gold nanoparticles. Five of these compounds showed columnar mesomorphism in a wide range of temperatures. These dendrons were reacted with gold nanoparticles stabilized with a combination of a dodecanethiol and 11-azidoundecane-1-thiol. The azido group of the last compound allowed the functionalization of the nanoparticles with the six polybenzylic dendrons by 1,3-dipolar cycloaddition between their alkynyl groups and the terminal azido groups of the thiols. A high efficiency of the cycloaddition process (47-69%) was confirmed by several experimental techniques and no decomposition or aggregation phenomena were detected in the dendron-coated nanoparticles. The involved mechanism and the resulting percentage composition of the final materials are discussed. The results of the ulterior growth of the nanoparticles by thermal treatment are influenced by the size and the shape of the dendron and the temperature of the process. The structures of the final nanoparticles were investigated by TEM, DSC, TGA, NMR and UV-Vis spectroscopy. These nanoparticles do not show liquid crystal properties. However, a melting process between a crystalline and a fluid phase is observed. In the solid phase, the nanomaterials prepared show a short-range interaction between nanoparticles with a 2D local hexagonal order. A near-field effect was observed in the UV-vis spectra by coupling of different surface plasmon resonance bands (SPR) probably due to the short-range interactions. The main novelty of this work lies in the scarcity of previous studies of gold nanoparticles coated with dendrons forming themselves columnar mesophases. Most of the studies reported in the literature deal with gold nanoparticles coated with calamitic mesogens. Additionally, the effect of the thermal treatment, which in a previous paper was shown to increase the mean size of the nanoparticles without increasing their size polydispersity, has been studied in these materials.

2.
ACS Omega ; 6(1): 348-357, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33458486

ABSTRACT

Monodisperse dendrimer-coated gold nanoparticles with a spherical shape have been obtained by direct reduction of HAuCl4 with sodium borohydride in the presence of dodecanethiol as a stabilizer and subsequent functionalization by ligand exchange reaction with polybenzylic thiolated dendrons. The substitution pattern of the dendrimeric units plays a fundamental role in the rate of the functionalization exchange process and consequently conditions the size and the polydispersity of the NPs obtained. An ulterior growth process occurs by thermal stimuli (150 °C) in a solvent-free environment. This method, carried out in mild conditions, allows the formation of highly monodisperse gold NPs with different sizes for different time reactions, and we discuss the mechanisms involved in this process. Finally, we demonstrate the chemical composition and stability of our compounds by structural, thermal, and chemical characterization of the samples before and after thermal treatment.

3.
J Phys Chem C Nanomater Interfaces ; 125(37): 20482-20487, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-35774116

ABSTRACT

Highly sensitive magnetometry reveals paramagnetism in dendrimer-coated gold nanoparticles. Different types of such nanoparticles, as a result of (i) functionalizing with two distinct Percec-type dendrons, linked to gold via dodecanethiol groups, and (ii) postsynthesis annealing in a solvent-free environment that further promotes their growth have been prepared. Ultimately, for each of the two functionalization configurations, we obtain highly monodisperse and stable nanoparticles of two different sizes, with spherical shape. These characteristics allow singling out the source of the measured paramagnetic signals as exclusively arising from the undercoordinated gold atoms on the surfaces of the nanoparticles. Bulk gold and the functional groups of the ligands contribute only diamagnetically.

4.
J Org Chem ; 85(14): 8944-8951, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32545956

ABSTRACT

Liquid crystal macrocycles (LCMs) combine the unique properties of liquid crystals with those associated with macrocyclic compounds-shape persistence and the capability of hosting small molecules. Herein, we investigate the grafting of coumarin-containing promesogenic moieties to pillar[5]arene as a strategy to obtain multifunctional LCMs. Pillar[5]arenes containing 10 and 30 coumarin units are glassy materials with nematic mesomorphism. Moreover, the coumarin moieties afford the pillar[5]arene derivatives with enhanced film-forming and photoresponsive properties. Photodimerization of the coumarin moieties results in cross-linked polymer networks, which can be used as alignment layers. Therefore, liquid-crystal coumarin-containing pillar[5]arenes represent a significant addition to the family of LCMs and may become useful for the development of engineered, hierarchical structures and materials.

5.
Inorg Chem ; 59(7): 4842-4857, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32167295

ABSTRACT

(Amino)cyclotriphosphazenes have been used as new scaffolds for the synthesis of silver(I) metallomesogens. Two cyclotriphosphazenes, [N3P3(NHCy)6] (phos-1) and nongem-trans-[N3P3(NHCy)3(NMe2)3] (phos-2), were reacted with the silver complex having a pro-mesogenic ligand, [Ag(OTf)L] (L = CNC6H4{OC(O)C6H2(3,4,5-(OC10H21)3)}-4; OTf = OSO2CF3), in different molar ratios, 1:1, 1:2, or 1:3, to give two series of cationic metallophosphazenes, [N3P3(NHCy)6{AgL}n](TfO)n (phos-1.n) and nongem-trans-[N3P3(NHCy)3(NMe2)3{AgL}n](TfO)n (phos-2.n) with n = 1, 2, or 3. The chemical structure of these compounds, deduced from spectroscopic techniques, was in accordance with coordination of the silver fragments "AgL" to nitrogen atoms of the phosphazene ring, whereby their number n depends on the molar ratio used. Despite the presence of the bulky substituents on the core N atoms, cyclotriphosphazenes coordinated to three "AgL" units exhibited mesomorphism at room temperature. The mesophase was characterized as columnar hexagonal according to the optical microscopy and X-ray diffraction studies. A model based on an intermolecular association in pairs of the metallocyclotriphosphazenes having three AgL units has been proposed in order to explain the mesomorphic columnar arrangement in these materials. Starting silver complex, [Ag(OTf)L], also exhibited a columnar hexagonal mesophase at room temperature.

6.
RSC Adv ; 8(66): 37700-37706, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-35558594

ABSTRACT

Two novel series of ionic liquid crystal polymers that display proton conductive properties are presented here. These materials are based on linear (l-PEI) or branched (b-PEI) poly(ethyleneimine) functionalized with unsymmetrical oxadiazole carboxylic acids derived from 1,3,4-oxadiazole (1,3,4-OXA m ) or 1,2,4-oxadiazole (1,2,4-OXA m ). The subscript "m" indicates the length of the spacer between the rigid moiety and the carboxyl group, namely m = 4 and 10. The occurrence of proton transfer from the carboxylic acid to the amine groups was confirmed by FTIR and NMR measurements. The liquid crystalline properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and X-ray diffraction (XRD). All ionic complexes displayed enantiotropic smectic A mesophases and in the case of the l-PEI derivatives a nematic phase was also observed at high temperatures. All investigated derivatives presented good proton conductivity values as determined by electrochemical impedance spectroscopy (EIS). Therefore, these ionic LC hyperbranched polymers represent an effective approach for the preparation of proton-transporting polymeric materials with potential applications in electrochemical devices.

7.
ACS Macro Lett ; 7(9): 1138-1143, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35632945

ABSTRACT

Highly conductive coaxial supramolecular wires are prepared by using a new family of Janus dendrimers that combines two rigid aromatic parts and two flexible aliphatic parts. The two external regions consist of a promesogenic block based on a third generation Percec-type dendron with four terminal dodecyloxy alkyl chains, whereas the two internal regions are formed by one, two, or three carbazole units bearing flexible spacers. These functional Janus dendrimers self-organize in columnar liquid crystal phases with a strong coaxial segregation within each column. Interestingly, the charge mobility studies revealed that these Janus dendrimers display semiconductor properties with hole mobility values up to 0.5 cm2 V-1 s-1, depending on the packing within the columns which can be tuned by the number of carbazole functional units. The high hole mobility values measured in these materials are among the highest values reported for columnar liquid crystals.

8.
Chemistry ; 22(14): 4924-30, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26890692

ABSTRACT

A straightforward synthesis of mesogenic pyrazoles starting from benzaldehydes by a combination of efficient Henry and Michael reactions led to novel supramolecular liquid crystals. The mesogens are fluorescent 3,5-dimethyl-4-(di or trialkoxyphenyl)pyrazoles and, in spite of the tapered shape of these molecules and their structural simplicity (only one phenyl ring), columnar liquid-crystal phases were formed that are stable at room temperature. The self-assembled structure was studied by XRD and the columnar cross section contains two molecules on average with an antiparallel arrangement of pyrazoles interacting through hydrogen bonds. In contrast, the single-crystal structure of a trimethoxy analog did not show hydrogen-bonded pyrazoles but chains of head-to-tail arranged molecules.

9.
Chemistry ; 22(18): 6185-9, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-26888329

ABSTRACT

New liquid-crystalline pillar[5]arene derivatives have been prepared by grafting first-generation Percec-type poly(benzylether) dendrons onto the macrocyclic scaffold. The molecules adopt a disc-shaped structure perfectly suited for self-organization into a columnar liquid-crystalline phase. In this way, the pillar[5]arene cores are piled up, thus forming a nanotubular wire encased within a shell of peripheral dendrons. The capability of pillar[5]arenes to form inclusion complexes has been also exploited. Specifically, detailed binding studies have been carried out in solution with 1,6-dicyanohexane as the guest. Inclusion complexes have also been prepared in the solid state. Supramolecular organization into the Colh mesophase has been deduced from X-ray diffraction data and found to be similar to that observed within the crystal lattice of a model inclusion complex prepared from 1,4-dimethoxypillar[5]arene and 1,6-dicyanohexane.

10.
Chemistry ; 21(52): 19149-58, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26552608

ABSTRACT

A series of ionic associates based on the platinum(II) chelate of 5-sulfo-8-quinolinol, [Pt(qS)2](2-), and ammonium-based amphiphiles is described. At variance with the prototypical neutral complex Pt(q)2 (q=8-quinolinol), these dianionic fluorophores, functionalized at the periphery with sulfonate groups, can be associated by the ionic self-assembly approach with various ammonium cations, such as (H2n+1Cn)2Me2N(+) (n=12, 16, 18) or complex ammonium cations carrying three Cn carbon chains (n=12, 14, 16) and an additional amide group. Investigations of their luminescence properties in solution, in the solid state, and, when possible, in thin films revealed that the phosphorescence properties in condensed phases are directly correlated to intermolecular interactions between the luminescent [Pt(qS)2](2-) centers. Of particular interest is also the formation of a columnar liquid-crystalline phase around room temperature (between -25 and +180 °C), as well as the very good film-forming ability of some of these fluorophores from organic solvents.

11.
Chemistry ; 21(4): 1795-802, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25413614

ABSTRACT

The synthesis of a series of 4-aryl-3,5-bis(arylethynyl)aryl-4H-1,2,4-triazoles derivatives is reported and the influence exerted by peripheral substitution on the morphology of the aggregates generated from these 1,2,4-triazoles is investigated by SEM imaging. The presence of paraffinic side chains results in long fibrillar supramolecular structures, but unsubstituted triazoles self-assemble into thinner ribbons and needle-like aggregates. The crystals obtained from methoxy-substituted triazoles have been utilised to elaborate a model that helps to justify aggregation of the investigated 1,2,4-triazoles, in which the operation of arrays of C-H⋅⋅⋅π non-covalent interactions plays a significant role. The results presented herein demonstrate the ability of simple molecules to behave as multitasking scaffolds with different properties, depending on peripheral substitution. Thus, although 1,2,4-triazoles without long paraffinic side chains exhibit optical waveguiding behaviour, triazoles endowed with peripheral paraffinic side chains exhibit hexagonal columnar mesomorphism.

12.
Chemistry ; 21(3): 1359-69, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25404154

ABSTRACT

The synthesis and characterisation of a family of block codendrimers consisting of highly versatile mesogenic and carbazole-containing 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendrons are reported. The liquid-crystal behaviour was investigated by means of differential scanning calorimetry, polarised-light optical microscopy and X-ray diffraction. Depending on the chemical structure of the constituent dendrons, the codendrimers show lamellar or columnar mesophases. On the basis of the experimental results, models both at the molecular level and in the mesophase are proposed. The physical properties of the block codendrimers derived from the presence of the carbazole moiety in their structure were investigated: photoluminescence in solution and in the mesophase, electrochemical behaviour and hole transport. Electrodeposition of carbazole dendrons afforded a globular supramolecular conformation in which the mesogenic molecular side plays a key role.

13.
Chem Commun (Camb) ; 51(10): 1811-4, 2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25519818

ABSTRACT

Fully consistent X-ray data and molecular dynamics simulations on new star-shaped liquid crystals yield two nanosegregated architectures with a coaxial stacking of two functional discotic units: tris(triazolyl)triazine and triphenylene. Analysis of lattice order along the principal axes reveals preferential staggered arrangement of the stacked molecules in the columnar assembly.

14.
Chemistry ; 20(51): 17047-58, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25331036

ABSTRACT

A series of supermolecular liquid crystals has been synthesized by combining phosphorus dendrimers of the zero, first, and fourth generations with sulfonamide derivatives, thus generating dendromesogens bearing 6, 12, and 96 mesogenic units on their surfaces. The relevant reactions could be monitored by (1) H, (19) F, and (31) P{(1) H} NMR spectroscopies. The thermal and mesomorphic properties of the products have been studied by optical microscopy, differential scanning calorimetry, and X-ray diffraction. All of the new macromolecules prepared in this work have been found to show mesomorphic properties over a wide temperature range; moreover, for all of the compounds, the columnar mesophases observed were maintained or vitrified at room temperature. On increasing the generation of these dendromesogens, mesophases appear at lower temperatures and remain stable over a wider temperature interval. In all cases, on the basis of X-ray analysis, a cylindrical symmetry of the molecules can be proposed to promote the supramolecular columnar arrangement observed in the mesophases. In this type of model, the height of the dendrimer clearly increases with increasing dendrimer generation, whereas its cross- sectional area increases only slightly, probably due to compression of the highly hyperbranched structures as a consequence of their progressive steric constraints. The mesomorphic arrangement is governed by the peripheral sulfonamide units.

15.
Chemistry ; 20(32): 10027-37, 2014 Aug 04.
Article in English | MEDLINE | ID: mdl-24938877

ABSTRACT

Novel liquid crystal (LC) dendrimers have been synthesised by hydrogen bonding between an s-triazine as the central core and three peripheral dendrons derived from bis(hydroxymethyl)propionic acid. Symmetric acid dendrons bearing achiral promesogenic units have been synthesised to obtain 3:1 complexes with triazine that exhibit LC properties. Asymmetric dendrons that combine the achiral promesogenic unit and an active moiety derived from coumarin or pyrene structures have been synthesised in order to obtain dendrimers with photophysical and electrochemical properties. The formation of the complexes was confirmed by IR and NMR spectroscopy data. The liquid crystalline properties were investigated by differential scanning calorimetry, polarising optical microscopy and X-ray diffractometry. All complexes displayed mesogenic properties, which were smectic in the case of symmetric dendrons and their complexes and nematic in the case of asymmetric dendrons and their dendrimers. A supramolecular model for the lamellar mesophase, based mainly on X-ray diffraction studies, is proposed. The electrochemical behaviour of dendritic complexes was investigated by cyclic voltammetry. The UV/Vis absorption and emission properties of the compounds and the photoconductive properties of the dendrons and dendrimers were also investigated.

16.
Soft Matter ; 10(2): 281-9, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24652332

ABSTRACT

The self-assembly behaviour both in the bulk and water of a series of amphiphilic dendrimers constituted by second generation PAMAM ionically functionalized with different amounts of myristic acid is shown here. The number of acids in the dendrimer determines the liquid-crystal properties and the structural parameters of their supramolecular organization. Most of them present mesomorphism, organizing in a smectic A mesophase, with a layer spacing decreasing when increasing the number of acids. All these dendrimers form well-defined nanoobjects in water. Micelles and broken lamellae have been found for compounds with low acid contents. In contrast, dendrimers with higher fatty acid contents self-assemble forming nanospheres with a lamellar nanostructure. All compounds are able to trap the hydrophobic molecule 9,10-diphenylanthracene independent of the acid contents. Interestingly, the trapped hydrophobic molecule dominates the self-assembly trend of the dendrimers with low acid contents and thus different nanoobjects are found after the encapsulation.


Subject(s)
Dendrimers/chemical synthesis , Acids/chemistry , Dendrimers/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles
17.
Chem Commun (Camb) ; 50(6): 688-90, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24281818

ABSTRACT

Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.


Subject(s)
Liquid Crystals/chemistry , Peptides, Cyclic/chemistry , Dimerization , Models, Molecular , Porosity , X-Ray Diffraction
18.
Chemistry ; 18(52): 16801-14, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23135742

ABSTRACT

A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase.


Subject(s)
Dendrimers/chemical synthesis , Liquid Crystals/chemistry , Organophosphorus Compounds/chemistry , Dendrimers/chemistry , Magnetic Resonance Spectroscopy , Microscopy, Polarization , Molecular Structure , Phase Transition , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , X-Ray Diffraction
19.
J Am Chem Soc ; 134(14): 6100-3, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22455602

ABSTRACT

Red- and blue-absorbing boron dipyrromethene dyes, bearing opposite electronic charges, associate in solution to form a 1:2 complex having a stability constant of ca. 10(17) M(-2). The complex can be dismantled by addition of a large excess of tetra-N-butylammonium cations. The same complex displays liquid crystalline properties on heating from rt to above 150 °C, as characterized by various experimental techniques. Highly efficient electronic energy transfer from the red to the blue dye occurs in both the initial complex and the subsequent mesomorphic state.

20.
Angew Chem Int Ed Engl ; 50(52): 12523-8, 2011 Dec 23.
Article in English | MEDLINE | ID: mdl-22057795

ABSTRACT

What a core-ker! By the appropriate combination of promesogenic bent-core structures and the C(60)  unit, lamellar polar liquid-crystal phases were induced. The supramolecular organization of the functional fullerene-based assemblies, the temperature range of the soft phase, the stabilization of the mesophase-like order at room temperature, and the molecular switching under an electric field can be tuned, depending on the molecular structure.


Subject(s)
Fullerenes/chemistry , Crystallization , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...