Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Educ ; 101(2): 490-500, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38370574

ABSTRACT

In an ongoing effort to incorporate active learning and promote higher order learning outcomes in undergraduate organic chemistry, a hybrid ("flipped") classroom structure has been used to facilitate a series of collaborative activities in the first two courses of the lower division organic chemistry sequence. An observational study of seven classes over a five-year period reveals there is a strong correlation between performance on the in-class activities and performance on the final exam across all classes; however, a significant number of students in these courses continue to struggle on both the in-class activities and final exam. The Activity Engagement Survey (AcES) was administered in the most recent course offering included in this study, and these preliminary data suggest that students who achieved lower scores on the in-class activities had lower levels of emotional and behavioral/cognitive engagement and were less likely to work in collaborative groups. In total, these findings suggest that if students can be guided to engage more successfully with the in-class activities, they are likely to be more successful in carrying out the higher order learning required on the final exam. In addition to the analyses of student performance and engagement in the in-class activities, the implementation of the flipped classroom structure and suggestions for how student engagement in higher order learning might be improved in future iterations of the class are described herein.

2.
J Microbiol Biol Educ ; 23(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34970392

ABSTRACT

Measuring students' perceptions of active learning activities may provide valuable insight into their engagement and subsequent performance outcomes. A recently published measure, the Assessing Student Engagement in Class Tool (ASPECT), was developed to assess student perceptions of various active learning environments. As such, we sought to use this measure in our courses to assess the students' perceptions of different active learning environments. Initial results analyzed with confirmatory factor analysis (CFA) indicated that the ASPECT did not function as expected in our active learning environments. Therefore, before administration within an introductory biology course that incorporated two types of active learning strategies, additional items were created and the wording of some original items were modified to better align with the structure of each strategy, thereby producing two modified ASPECT (mASPECT) versions. Evidence of response process validity of the data collected was analyzed using cognitive interviews with students, while internal structure validity evidence was assessed through exploratory factor analysis (EFA). When data were collected after a "deliberative democracy" (DD) activity, 17 items were found to contribute to 3 factors related to 'personal effort', 'value of the environment', and 'instructor contribution'. However, data collected after a "clicker" day resulted in 21 items that contributed to 4 factors, 3 of which were similar to the DD activity, and a fourth was related to 'social influence'. Overall, these results suggested that the same measure may not function identically when used within different types of active learning environments, even with the same population, and highlights the need to collect data validity evidence when adopting and/or adapting measures.

3.
CBE Life Sci Educ ; 18(1): ar3, 2019 03.
Article in English | MEDLINE | ID: mdl-30681902

ABSTRACT

Embedding active learning is a common mechanism for meeting science, technology, engineering, and mathematics (STEM) education reform goals. Researchers have identified student benefits from such strategies, yet these benefits may not be universal for all students. We sought to identify how students at a nontraditional university perceive introductory biology and chemistry courses, and whether perceptions relate to course type, performance, or student status. We surveyed students ( n = 601) using open-ended prompts regarding their perceptions of factors that impact their learning and interest, and about specific learning strategies. Generally, students did not differ in what influenced their learning or interest in course content, and students mostly perceived active learning positively. Attitudes toward active learning did not correlate to final course scores. Despite similar perceptions and attitudes, performance differed significantly among student groups-postbaccalaureates outperformed all others, and traditional-age students outperformed non-traditional-age students. We found that, even with active learning, underrepresented minority students underperformed compared to their peers, yet differentially benefited from nonsummative course factors. Although students generally perceive classroom environments similarly, undetected factors are influencing performance among student groups. Gaining a better understanding of how classroom efforts impact all of our students will be key to moving beyond supposing that active learning simply "works."


Subject(s)
Attitude , Biology/education , Chemistry/education , Curriculum , Perception , Students , Adolescent , Female , Focus Groups , Humans , Male , Problem-Based Learning , Universities , Young Adult
4.
Biochem Mol Biol Educ ; 43(1): 13-9, 2015.
Article in English | MEDLINE | ID: mdl-25418988

ABSTRACT

The General, Organic, and Biological Chemistry Knowledge Assessment (GOB-CKA) is a multiple-choice instrument designed to assess students' understanding of the chemistry topics deemed important to clinical nursing practice. This manuscript describes the development process of the individual items along with a psychometric evaluation of the final version of the items and instrument. In developing items for the GOB-CKA, essential topics were identified through a series of expert interviews (with practicing nurses, nurse educators, and GOB chemistry instructors) and confirmed through a national survey. Individual items were tested in qualitative studies with students from the target population for clarity and wording. Data from pilot and beta studies were used to evaluate each item and narrow the total item count to 45. A psychometric analysis performed on data from the 45-item final version was used to provide evidence of validity and reliability. The final version of the instrument has a Cronbach's alpha value of 0.76. Feedback from an expert panel provided evidence of face and content validity. Convergent validity was estimated by comparing the results from the GOB-CKA with the General-Organic-Biochemistry Exam (Form 2007) of the American Chemical Society. Instructors who wish to use the GOB-CKA for teaching and research may contact the corresponding author for a copy of the instrument.


Subject(s)
Biochemistry/education , Chemistry, Organic/education , Humans , Knowledge , Students , Surveys and Questionnaires
5.
J Chem Phys ; 126(8): 084307, 2007 Feb 28.
Article in English | MEDLINE | ID: mdl-17343448

ABSTRACT

We report the femtosecond nuclear dynamics of Cu(CD3OD) van der Waals clusters, investigated using photodetachment-photoionization spectroscopy. Photodetachment of an electron from Cu-(CD3OD) with a 150 fs, 398 nm laser pulse produces a vibrationally excited neutral complex that undergoes ligand reorientation and dissociation. The dynamics of Cu(CD3OD) on the neutral surface is interrogated by delayed femtosecond resonant two-photon ionization. Analysis of the resulting time-dependent signals indicates that the nascent Cu(CD3OD) complex dissociates on two distinct time scales of 3 and 30 ps. To understand the origins of the observed time scales, complimentary studies were performed. These included measurement of the photoelectron spectrum of Cu-(CD3OD) as well as a series of calculations of the structure and the electronic and vibrational energies of the anion and neutral complexes. Based on the comparisons of the experimental and calculated results for Cu(CD3OD) with those obtained from earlier studies of Cu(H2O), we conclude that the 3 ps time scale reflects the energy transfer from the rotation of CD3OD in the complex to the dissociation coordinate, while the 30 ps time scale reflects the energy transfer from the excited methyl torsion states to the dissociation coordinate.

6.
J Chem Phys ; 125(13): 133405, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029479

ABSTRACT

We report the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5-10) clusters following excitation to the dissociative IBr-A' 2Pi12 state of the chromophore via a 180 fs, 795 nm laser pulse. Dissociation from the A' state of the bare anion results in I- and Br products. Upon solvation with CO2, the IBr- chromophore regains near-IR absorption only after recombination and vibrational relaxation on the ground electronic state. The recombination time was determined by using a delayed femtosecond probe laser, at the same wavelength as the pump, and detecting ionic photoproducts of the recombined IBr- cluster ions. In sharp contrast to previous studies involving solvated I2-, the observed recombination times for IBr-(CO2)n increase dramatically with increasing cluster size, from 12 ps for n = 5 to 900 ps for n = 8,10. The nanosecond recombination times are especially surprising in that the overall recombination probability for these cluster ions is unity. Over the range of 5-10 solvent molecules, calculations show that the solvent is very asymmetrically distributed, localized around the Br end of the IBr- chromophore. It is proposed that this asymmetric solvation delays the recombination of the dissociating IBr-, in part through a solvent-induced well in the A' state that (for n = 8,10) traps the evolving complex. Extensive electronic structure calculations and nonadiabatic molecular dynamics simulations provide a framework to understand this unexpected behavior.

7.
J Chem Phys ; 122(5): 54310, 2005 Feb 01.
Article in English | MEDLINE | ID: mdl-15740325

ABSTRACT

The ultrafast relaxation dynamics of Cu(H(2)O)(2) is investigated using femtosecond photodetachment-photoionization spectroscopy. In addition, stationary points on the Cu(H(2)O)(2) anion, neutral, and cation potential energy surfaces are characterized by ab initio electronic structure calculations. Electron photodetachment from Cu(-)(H(2)O)(2) initiates the dynamics on the ground-state potential energy surface of neutral Cu(H(2)O)(2). The resulting Cu(H(2)O)(2) complexes experience large-amplitude H(2)O reorientation and dissociation. The time evolution of the Cu(H(2)O)(2) fragmentation products is monitored by time-resolved resonant multiphoton ionization. The parent ion, Cu(+)(H(2)O)(2), is not detected above background levels. The rise to a maximum of the Cu(+) signal from Cu(-)(H(2)O)(2), and the decay of the Cu(+)(H(2)O) signal from Cu(-)(H(2)O)(2) have similar tau approximately 10 ps time dependences to the corresponding signals from Cu(-)(H(2)O), but display clear differences at very short and long times. The experimental observations can be understood in terms of the following picture. Prompt dissociation of H(2)O from nascent Cu(H(2)O)(2) gives rise to a vibrationally excited Cu(H(2)O) complex, which dissociates to Cu+H(2)O due to coupling of H(2)O internal rotation to the dissociation coordinate. This prompt dissociation removes all intra-H(2)O vibrational excitation from the intermediate Cu(H(2)O) fragment, which quenches the long time vibrational predissociation to Cu+H(2)O previously observed in analogous experiments on Cu(-)(H(2)O).

SELECTION OF CITATIONS
SEARCH DETAIL
...