Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Brain Res ; 122(2): 175-84, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9776516

ABSTRACT

This study examined (1) how changes in head position affect postural orientation variables during stance and (2) whether changes in head position affect the rapid postural response to linear translation of the support surface in the horizontal plane. Cats were trained to stand quietly on a moveable platform and to maintain five different head positions: center, left, right, up, and down. For each head position, stance was perturbed by translating the support surface linearly in 16 different directions in the horizontal plane. Postural equilibrium responses were quantified in terms of the ground reaction forces, kinematics, dynamics (net joint torques), body center of mass, and electromyographic (EMG) responses of selected limb and trunk muscles. A change in head position involved rotation of not only the neck but also the scapulae and anterior trunk. Tonic EMG levels were modulated in several forelimb and scapular muscles but not hindlimb muscles. Finally, large changes in head orientation in both horizontal and vertical planes did not hamper the ability of cats to maintain postural equilibrium during linear translation of the support surface. The trajectory of the body's center of mass was the same, regardless of head position. The main change was observed in joint torques at the forelimbs evoked by the perturbation. Evoked EMG responses of forelimb and scapular muscles were modulated in terms of magnitude but not spatial tuning. Hindlimb responses were unchanged. Thus, the spatial and temporal pattern of the automatic postural response was unchanged and only amplitudes of evoked activity were modulated by head position.


Subject(s)
Head Movements/physiology , Orientation/physiology , Postural Balance/physiology , Posture/physiology , Animals , Cats , Electromyography , Female , Joints/physiology , Kinetics , Male , Movement/physiology
2.
J Comp Neurol ; 358(2): 294-304, 1995 Jul 24.
Article in English | MEDLINE | ID: mdl-7560288

ABSTRACT

The interaural difference in the level of sounds is an important cue for the localization of the sound's source. In the barn owl, a keen auditory predator, this binaural cue is first computed in the nucleus ventralis lemnisci laterale, pars posterior (VLVp), a cell group found within the fibers of the lateral lemniscus. Its neurons are excited by inputs from the contralateral ear and inhibited by inputs to the ipsilateral ear and are therefore sensitive indicators of interaural level difference. The excitation arrives by a direct input from the contralateral nucleus angularis, a cochlear nucleus, and the inhibition is mediated by a commissural projection that interconnects the VLVps of the two sides. The dorsally located neurons in the VLVp are more heavily inhibited than those found more ventrally, thus giving rise to a gradient of inhibition. This inhibitory gradient plays a central role in recent models of VLVp function. We present evidence based on standard anterograde tracing methods that this gradient of inhibition is mediated by a dorsoventral gradient in the density of synaptic inputs from the contralateral VLVp, the source of inhibition. Specifically, injection of tracers into one VLVp, regardless of the position of the injection within the nucleus, produced a vertically oriented field of label that was densest along the dorsal margin of the contralateral VLVp and became sparser a more ventral levels. Furthermore, we found that injections into the medial and lateral aspects of the nucleus produced this dorsoventrally graded field of label along the medial and lateral aspects of the contralateral VLVp, respectively. Finally, we confirmed an earlier observation suggesting that the anterior and posterior aspects of one VLVp project to the anterior and posterior aspects of the contralateral nucleus, respectively.


Subject(s)
Birds/anatomy & histology , Brain Stem/anatomy & histology , Sound Localization/physiology , Animals , Auditory Pathways/anatomy & histology , Models, Neurological , Nerve Fibers/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...