Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 52(1): 415-423, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31385169

ABSTRACT

Animal breeding programs have used molecular genetic tools as an auxiliary method to identify and select animals with superior genetic merit for milk production and milk quality traits as well as disease resistance. Genes of the major histocompatibility complex (MHC) are important molecular markers for disease resistance that could be applied for genetic selection. The aim of this study was to identify single nucleotide polymorphisms (SNPs) and haplotypes in DRB2, DRB3, DMA, and DMB genes in Murrah breed and to analyze the association between molecular markers and milk, fat, protein and mozzarella production, fat and protein percentage, and somatic cell count. Two hundred DNA samples from Murrah buffaloes were used. The target regions of candidate genes were amplified by polymerase chain reaction (PCR) followed by sequencing and identification of polymorphisms. Allele and genotype frequencies, as well as linkage disequilibrium between SNPs, were calculated. Genotypes were used in association analyses with milk production and quality traits. Except for the DMA gene, identified as monomorphic, the other genes presented several polymorphisms. The DMB, DRB2, and DRB3 genes presented two, six, and seven SNPs, respectively. Fifty-seven haplotype blocks were constructed from 15 SNPs identified, which was used in association analyses. All the studied traits had at least one associated haplotype. In conclusion, it is suggested that the haplotypes found herein can be associated with important traits related to milk production and quality.


Subject(s)
Buffaloes/genetics , Haplotypes , Major Histocompatibility Complex/genetics , Milk/chemistry , Polymorphism, Single Nucleotide , Animals , Buffaloes/metabolism , Female
2.
Anim Reprod Sci ; 207: 1-8, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31266598

ABSTRACT

The identification of selection signature genes may help to detect genomic regions that underwent artificial selection and contributed to phenotypic diversity. The aim of this study, therefore, was to detect selection signatures in candidate genes and quantitative trait locus (QTL) for reproductive traits in a Nellore population being selected for sexual precocity. A total of 2035 Nellore heifers, sourced from breeding programs focused on sexual precocity, were used. Candidate genes and some specific QTL related to reproductive traits were chosen based on published literature and Animal QTL databases, respectively, for investigation whether these regions were affected by selection. Selection signature DNA sequences were detected in the selected regions using the extended haplotype homozygosity (EHH) and relative extended haplotype homozygosity (REHH) methods. From 22,241 single nucleotide polymorphisms (SNPs) located in the candidate genes and QTL, 17,312 SNPs generated 2756 haplotype blocks. A total of 7518 EHH tests were analyzed using haplotypes with a frequency of more than 25%, for which there were 39 tests that were significant for REHH (P<0.01). Selection signature DNA sequences were detected that contained several QTLs for important reproductive traits in cattle, suggesting that reproductive traits may have been affected by selection for sexual precocity in this population. Forty-six genes were located in the selection signature regions, whereas 24 genes participated in important biological processes or pathways that may underlie sexual precocity. These results indicate there are possible molecular mechanisms related to sexual precocity in the Nellore breed.


Subject(s)
Cattle/genetics , Quantitative Trait Loci , Reproduction/genetics , Selection, Genetic/genetics , Transcriptome , Animals , Breeding , Cattle/physiology , Cattle Diseases/genetics , Genetic Association Studies/veterinary , Genotype , Phenotype , Polymorphism, Single Nucleotide , Puberty, Precocious/genetics
3.
PLoS One ; 13(1): e0190197, 2018.
Article in English | MEDLINE | ID: mdl-29293544

ABSTRACT

Reproductive traits are of the utmost importance for any livestock farming, but are difficult to measure and to interpret since they are influenced by various factors. The objective of this study was to detect associations between known polymorphisms in candidate genes related to sexual precocity in Nellore heifers, which could be used in breeding programs. Records of 1,689 precocious and non-precocious heifers from farms participating in the Conexão Delta G breeding program were analyzed. A subset of single nucleotide polymorphisms (SNP) located in the region of the candidate genes at a distance of up to 5 kb from the boundaries of each gene, were selected from the panel of 777,000 SNPs of the High-Density Bovine SNP BeadChip. Linear mixed models were used for statistical analysis of early heifer pregnancy, relating the trait with isolated SNPs or with haplotype groups. The model included the contemporary group (year and month of birth) as fixed effect and parent of the animal (sire effect) as random effect. The fastPHASE® and GenomeStudio® were used for reconstruction of the haplotypes and for analysis of linkage disequilibrium based on r2 statistics. A total of 125 candidate genes and 2,024 SNPs forming haplotypes were analyzed. Statistical analysis after Bonferroni correction showed that nine haplotypes exerted a significant effect (p<0.05) on sexual precocity. Four of these haplotypes were located in the Pregnancy-associated plasma protein-A2 gene (PAPP-A2), two in the Estrogen-related receptor gamma gene (ESRRG), and one each in the Pregnancy-associated plasma protein-A gene (PAPP-A), Kell blood group complex subunit-related family (XKR4) and mannose-binding lectin genes (MBL-1) genes. Although the present results indicate that the PAPP-A2, PAPP-A, XKR4, MBL-1 and ESRRG genes influence sexual precocity in Nellore heifers, further studies are needed to evaluate their possible use in breeding programs.


Subject(s)
Cattle/genetics , Haplotypes , Selection, Genetic , Sexual Maturation/genetics , Animals , Cattle/physiology , Female , Linkage Disequilibrium , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...