Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Pharmacol ; 97: 104033, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481560

ABSTRACT

Anticoagulant rodenticides (ARs), particularly second-generation compounds (SGAR), are known to be a potential threat to unintended species due to their tissue persistence. The liver is the storage tissue of ARs and is a matrix of choice in diagnosing exposure and intoxication of non-target fauna. However, it is only available on dead animals. Blood and faeces can be used on living animals. These two biological matrices were compared in terms of their relevance to exposure to ARs. In addressing this question, we compared the faecal, plasma and liver concentrations of bromadiolone, one of the SGAR frequently implicated in wildlife exposure. We studied this comparison at the individual level and at the population level, considering three influencing factors: dose, sex and time. Our findings demonstrate that faecal analyses are more valuable than plasma analyses for monitoring AR exposure of domestic and wild animals, even if faecal concentrations cannot be correlated with liver concentrations.


Subject(s)
Animals, Wild , Rodenticides , Animals , Anticoagulants/toxicity , Rodenticides/toxicity , Animals, Domestic , Environmental Monitoring , Feces/chemistry
2.
Environ Res ; 200: 111422, 2021 09.
Article in English | MEDLINE | ID: mdl-34062198

ABSTRACT

Anticoagulant rodenticides (AR) resistance has been defined as "a major loss of efficacy due to the presence of a strain of rodent with a heritable and commensurately reduced sensitivity to the anticoagulant". The mechanism that supports this resistance has been identified as based on mutations in the Vkorc1 gene leading to severe resistance in rats and mice. This study evaluates the validity of this definition in the fossorial water vole and explores the possibility of a non-genetic diet-based resistance in a strict herbivorous rodent species. Genetic support was explored by sequencing the Vkorc1 gene and the diet-based resistance was explored by the dosing of vitamins K in liver of voles according to seasons. From a sample of 300 voles, only 2 coding mutations, G71R and S149I, were detected in the Vkorc1 gene in the heterozygous state with low allele frequencies (0.5-1%). These mutations did not modify the sensitivity to AR, suggesting an absence of genetic Vkorc1-based resistance in the water vole. On the contrary, vitamin K1 was shown to be 5 times more abundant in the liver of the water vole compared to rats. This liver concentration was shown to seasonally vary, with a trough in late winter and a peak in late spring/early summer related to the growth profile of grass. This increase in concentration might be responsible for the increased resistance of water voles to AR. This study highlights a non-genetic, diet-related resistance mechanism in rodents to AR. This diet-based resistance might explain the different evolution of the Vkorc1 gene in the fossorial water vole compared to rats and mice.


Subject(s)
Rodenticides , Animals , Anticoagulants , Arvicolinae/genetics , Diet , Membrane Proteins , Mice , Rats , Rodenticides/toxicity , Seasons , Vitamin K Epoxide Reductases/genetics
3.
Environ Toxicol Pharmacol ; 81: 103536, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33130091

ABSTRACT

Cyclic water vole population explosions can be controlled in some European countries with anticoagulant rodenticides leading sometimes to wildlife poisonings due to the toxin's tissue persistence. Here, we analyzed the pharmacokinetics of rodenticide residues in voles and we explored potential ways of improving the mass application of these agents based on the concept of stereoisomers. We demonstrated the dramatic persistence of bromadiolone in vole tissues with a hepatic half-life of about 10-30 days, while the tissue persistence of chlorophacinone is rather short with a hepatic half-life of about one day. The dramatic persistence of bromadiolone is due to the trans-isomer group (the major compound in bromadiolone), while the cis-isomer group has a short half-life. Because of resistance to chlorophacinone, the cis-bromadiolone isomers may constitute an excellent compromise between efficacy and ecotoxicological risk to control voles. A mathematical model is proposed to favor the development of baits mixed with cis-isomer groups.


Subject(s)
4-Hydroxycoumarins/pharmacokinetics , Anticoagulants/pharmacokinetics , Models, Biological , Rodenticides/pharmacokinetics , 4-Hydroxycoumarins/chemistry , Animals , Anticoagulants/chemistry , Arvicolinae , Female , Indans/pharmacokinetics , Liver/metabolism , Male , Rodent Control/methods , Rodenticides/chemistry , Stereoisomerism
4.
Nutrients ; 11(9)2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484376

ABSTRACT

Vitamin K is crucial for many physiological processes such as coagulation, energy metabolism, and arterial calcification prevention due to its involvement in the activation of several vitamin K-dependent proteins. During this activation, vitamin K is converted into vitamin K epoxide, which must be re-reduced by the VKORC1 enzyme. Various VKORC1 mutations have been described in humans. While these mutations have been widely associated with anticoagulant resistance, their association with a modification of vitamin K status due to a modification of the enzyme efficiency has never been considered. Using animal models with different Vkorc1 mutations receiving a standard diet or a menadione-deficient diet, we investigated this association by measuring different markers of the vitamin K status. Each mutation dramatically affected vitamin K recycling efficiency. This decrease in recycling was associated with a significant alteration of the vitamin K status, even when animals were fed a menadione-enriched diet suggesting a loss of vitamin K from the cycle due to the presence of the Vkorc1 mutation. This change in vitamin K status resulted in clinical modifications in mutated rats only when animals receive a limited vitamin K intake totally consistent with the capacity of each strain to recycle vitamin K.


Subject(s)
Point Mutation , Vitamin K Deficiency , Vitamin K Epoxide Reductases/genetics , Vitamin K Epoxide Reductases/metabolism , Vitamin K/blood , Animals , Calcium/metabolism , Diet , Drug Administration Schedule , Gene Expression Regulation, Enzymologic , Genotype , Male , Microsomes, Liver , Prothrombin Time , Rats , Vitamin K 3/administration & dosage
5.
Environ Pollut ; 148(1): 372-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17241720

ABSTRACT

We aimed to evaluate whether environmental factors affect the persistence of bromadiolone in baits in field treatment. Baits were distributed in three soils according to two types of distribution: (1) artificial galleries conform to agricultural practices; (2) storage cavities to mimic bait storage by voles. Persistence was evaluated for 30 days in galleries and 80 days in storage cavities in autumn and spring. The decrease of bromadiolone concentrations was described by a first-order kinetic model. In galleries, the half-lives ranged from 3.0 to 5.1 days in autumn and from 5.4 to 6.2 days in spring. The half-lives were similar between soils and seasons but the pattern of persistence differed lightly for two soils between seasons. Half-lives in storage cavities, 42.7 and 24.6 days in autumn and spring respectively, were longer than in galleries. To conclude, both soil characteristics and climatic conditions weakly influence persistence, while bait storage lengthens it dramatically.


Subject(s)
4-Hydroxycoumarins/analysis , Arvicolinae/psychology , Behavior, Animal , Rodenticides/analysis , Soil Pollutants/analysis , Triticum , Agriculture , Animals , Climate , Environmental Monitoring/methods , France , Rodent Control
6.
Environ Res ; 102(3): 291-8, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16616915

ABSTRACT

This paper documents the exposure pattern of a population of small mammals to bromadiolone over time in a field-scale follow up. This is the first assessment of the field-scale effect of such control operation on the availability of bromadiolone-exposed A. terrestris prey to nontarget predator species. It indicates that an important risk of poisoning of nontarget species does exist during large-scale field control operations with bromadiolone, which is contradictory to results obtained from laboratory experiments in the early 1980s and consistent with the secondary poisoning hazards due to repeated exposure regularly reported during the past 20 years.


Subject(s)
4-Hydroxycoumarins/metabolism , Arvicolinae/metabolism , Pesticide Residues/metabolism , Rodenticides/metabolism , 4-Hydroxycoumarins/administration & dosage , Animals , Food Chain , Predatory Behavior , Rodenticides/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...